科微学术

微生物学通报

防治平贝母菌核病的木霉菌筛选及室内防效
作者:
基金项目:

吉林省科技厅重点研发项目(20200404014YY)


Screening of Trichoderma spp. to control Sclerotinia sclerotiorum-induced sclerotiniose in Fritilla ussuriensis Maxim. and the laboratory control effect
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】由病原菌Sclerotium denigrans侵染引起的平贝母菌核病是其主要的鳞茎病害之一,给平贝母种植产业带来了巨大的损失。【目的】筛选出对平贝母菌核病具有拮抗效果的木霉菌株。【方法】以平贝母菌核病作为靶标菌,采用平板对峙试验、平板对扣法、圆盘滤膜法与发酵液抑菌试验筛选对平贝母菌核病具有拮抗效果的木霉菌株。采用顶空固相微萃取的方法检测拮抗效果较好的木霉菌挥发性成分;二硝基水杨酸(dinitrosalicylic acid, DNS)比色法测定木霉菌的β-1,3葡聚糖酶的活性;室内防效试验验证其对平贝母菌核病的防治效果。【结果】平板对峙试验发现木霉菌F1、F2和D6对平贝母菌核病菌的生长具有较强的抑制作用,其抑菌率分别为91.06%、87.00%和86.12%;平板对扣法发现木霉菌E17和A26对菌核病菌的抑制效果最为明显,抑菌率分别为74.96%和75.86%;圆盘滤膜法发现菌核病菌在F2、C6、D3、F4、A26、B30、D4和D6的琼脂培养基上均不生长,抑菌率达100%;发酵液抑菌试验表明木霉菌D3抑制效果最强,可完全抑制菌核病菌的生长,抑菌率为100%;对A26、D4、E8、E17和D3这5株木霉进行GC/MS挥发性产物分析,在E17发现了具有抗真菌活性的6-戊基-2H-吡喃-2-酮等活性物质;DNS比色法发现β-1,3葡聚糖酶活性最高的木霉菌为F1;室内防效试验测定发现D3能明显抑制平贝母鳞茎菌核病的病变,对平贝母菌核病具有潜在的生防活性。【结论】木霉菌D3在防治平贝母菌核病中是极具开发价值的菌种。

    Abstract:

    [Background] Sclerotinia sclerotiorum-induced sclerotiniose in Fritilla ussuriensis is one of the main bulb diseases, which causes huge loss to the industry of F. ussuriensis. [Objective] To screen Trichoderma strains against S. sclerotiorum. [Methods] Eligible strains were identified based on plate confrontation assay, two-sealed-base-plates method, disc filter membrane method, and the test of the inhibitory effect of fermentation broth. Headspace solid-phase microextraction was used to detect the composition of volatile components of Trichoderma strains with better antagonistic effect. The β-1,3 glucanase activity of strains was assayed with the DNS method. Experiment on in vitro bulbs was carried out to verify the effect on S. denigrans. [Results] Strains F1, F2, and D6 had strong inhibitory effect on the growth of S. denigrans and the inhibition rates were 91.06%, 87.00%, and 86.12%, respectively. According to the disc filter membrane test, S. denigrans did not grow on the agar with F2, C6, D3, F4, A26, B30, D4, and D6 and the inhibition rate was up to 100%. The two-sealed-base-plates test indicated that E12 and A26 had the most obvious inhibitory effect, with the inhibition rates of 74.96% and 75.86%, separately. The test on the fermentation broth showed that D3 had the strongest inhibitory effect, which could completely inhibit the growth of S. denigrans (inhibition rate: 100%). The volatile products of A26, D4, E8, E17, and D3 were analyzed by GC/MC, and the antifungal active substances of E17 such as 6-n-pentyl-2H-pyran-2-one were found. F1 was found to have the highest β-1,3 glucanase activity. According to the laboratory test, D3 can significantly inhibit the pathological changes of sclerotiniose in bulbs of F. ussuriensis and has potential biocontrol activity. [Conclusion] Trichoderma D3 has great potential for the control of S. denigrans.

    参考文献
    [1] 陈虞超, 郭生虎, 关雅静, 李明, 安钰, 刘华. 贝母属药用植物研究进展[J]. 分子植物育种, 2019, 17(18): 6198-6206. CHEN YC, GUO SH, GUAN YJ, LI M, AN Y, LIU H. The research progress of medicinal plants Fritillaria[J]. Molecular Plant Breeding, 2019, 17(18): 6198-6206(in Chinese).
    [2] 由士江, 于洪君, 李双福. 平贝母菌核病的防治研究[J]. 吉林林业科技, 2005, 34(3): 27-29. YOU SJ, YU HJ, LI SF. Research on controlling sclerotium disease of Fritilaria ussuriensis[J]. Forestry Science and Technology, 2005, 34(3): 27-29(in Chinese).
    [3] 宋小双, 遇文婧, 尹大川, 周琦, 邓勋. 平贝黑腐病病原菌分离鉴定和生物学特性的初步研究[J]. 中国森林病虫, 2016, 35(3): 7-11. SONG XS, YU WJ, YIN DC, ZHOU Q, DENG X. Pathogen identification and bionomics of the black rot of Fritillaria ussuriensis[J]. Forest Pest and Disease, 2016, 35(3): 7-11(in Chinese).
    [4] 邹佳迅, 范晓旭, 宋福强. 木霉(Trichoderma spp.)对植物土传病害生防机制的研究进展[J]. 大豆科学, 2017, 36(6): 970-977. ZOU JX, FAN XX, SONG FQ. Biocontrol mechanism of Trichoderma spp. against soilborn plant disease[J]. Soybean Science, 2017, 36(6): 970-977(in Chinese).
    [5] 李冠霖, 徐洋, 邢鹏杰, 高婷婷, 冀瑞卿. 木霉对不同香菇菌丝体生长阶段的致病性及生防制剂对其的抑制效果[J]. 分子植物育种, 2019, 17(19): 6530-6534. LI GL, XU Y, XING PJ, GAO TT, JI RQ. Pathogenicity of Trichoderma spp. to Lentinula edodes and the inhibitory effects of biocontrol agents[J]. Molecular Plant Breeding, 2019, 17(19): 6530-6534(in Chinese).
    [6] 曾华兰, 叶鹏盛, 李琼芳, 江怀仲. 利用木霉防治丹参根腐病的研究[J]. 四川农业大学学报, 2003, 21(2): 142-144. ZENG HL, YE PS, LI QF, JIANG HZ. Study on Dan-Shen root rot disease and its control by Trichoderma spp.[J]. Journal of Sichuan Agricultural University, 2003, 21(2): 142-144(in Chinese).
    [7] 程齐来, 陈君, 于晶. 木霉菌对荒漠肉苁蓉茎腐病菌的拮抗作用[J]. 中药研究与信息, 2005, 7(8): 16-18. CHENG QL, CHEN J, YU J. Primary study on the antagonism of Trichoderma species on pathogen of Cistanche deserticola stem rot[J]. Research & Information of Traditional Chinese Medicine, 2005, 7(8): 16-18(in Chinese).
    [8] 王子晴, 卢宝慧, 田义新, 王玉珍, 张敏, 权兴周, 赵光远, 陈磊, 王志清. 拮抗北细辛菌核病木霉菌的分离、鉴定及生防效果[J]. 微生物学通报, 2021, 48(12): 4624-4635. WANG ZQ, LU BH, TIAN YX, WANG YZ, ZHANG M, QUAN XZ, ZHAO GY, CHEN L, WANG ZQ. isolation, identification and biocontrol effect of Trichoderma antagonistic to Sclerotinia disease of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag[J]. Microbiology China, 2021, 48(12): 4624-4635(in Chinese).
    [9] 赵兴丽, 陶刚, 娄璇, 顾金刚. 钩状木霉在辣椒根际定殖动态及其对辣椒疫病的生物防治[J]. 中国农业科技导报, 2020, 22(5): 106-114. ZHAO XL, TAO G, LOU X, GU JG. Colonization dynamics of Trichoderma hamatum in pepper rhizosphere and its biological control against pepper Phytophthora blight[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 106-114(in Chinese).
    [10] 陶玲芸, 张怡雯, 李雅乾, 罗来鹏, 张曾鲁, 陈捷. 棘孢木霉挥发性次级代谢产物检测及抑菌活性分析[J]. 生物工程学报, 2020, 36(6): 1181-1189. TAO LY, ZHANG YW, LI YQ, LUO LP, ZHANG ZL, CHEN J. Antagonistic activity of volatile metabolites from Trichoderma asperellum[J]. Chinese Journal of Biotechnology, 2020, 36(6): 1181-1189(in Chinese).
    [11] 扈进冬, 隋丽娜, 李玲, 陈凯, 李纪顺. 深绿木霉HB20111产挥发性物质及其功能分析[J]. 植物保护, 2021, 47(5): 58-63. HU JD, SUI LN, LI L, CHEN K, LI JS. Identification and functional an analysis of volatile organic compounds from Trichoderma atroviride HE20111[J]. Plant Protection, 2021, 47(5): 58-63(in Chinese).
    [12] 杨合同, 肖性龙, 徐砚珂. 木霉菌平板抗菌、几丁质酶和β-1,3-葡聚糖酶活性与病害防治效果[J]. 山东科学, 2003, 16(2): 1-6. YANG HT, XIAO XL, XU YK. In vitro inhibition, chitinase and β-1,3-glucanase production of Trichoderma spp. and their biocontrol activity[J]. Shandong Science, 2003, 16(2): 1-6(in Chinese).
    [13] 唐治玉, 王淮, 熊善柏, 王琳. β-1,3-葡聚糖酶产生菌的筛选及其产酶条件[J]. 湖南农业大学学报(自然科学版), 2006, 32(5): 552-556. TANG ZY, WANG H, XIONG SB, WANG L. Studies on the screening of β-1,3-glucanase producing strain sand enzyme producing condition[J]. Journal of Hunan Agricultural University (Natural Sciences), 2006, 32(5): 552-556(in Chinese).
    [14] 张静雅, 李欣雨, 张成, 王伟伟, 张鹏, 侯巨梅, 刘铜. 木薯炭疽病拮抗木霉菌筛选与室内防效研究[J]. 中国生物防治学报, 2022, 38(1): 115-124. ZHANG JY, LI XY, ZHANG C, WANG WW, ZHANG P, HOU JM, LIU T. Screening of antagonistic Trichoderma against cassava anthracnose and investigation on its control effect in laboratory[J]. Chinese Journal of Biological Control, 2022, 38(1): 115-124(in Chinese).
    [15] 康彦平, 晏立英, 雷永, 万丽云, 淮东欣, 王志慧, 廖伯寿. 拟康宁木霉对花生菌核病的生防机制[J]. 中国油料作物学报, 2017, 39(6): 842-847. KANG YP, YAN LY, LEI Y, WAN LY, HUAI DX, WANG ZH, LIAO BS. Biocontrol mechanism of Trichoderma koningiopsis against Sclerotinia sclerotiorum in peanut[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6): 842-847(in Chinese).
    [16] WONGLOM P, DAENGSUWAN W, ITO SI, SUNPAPAO A. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved[J]. Physiological and Molecular Plant Pathology, 2019, 107: 1-7.
    [17] 徐文, 黄媛媛, 黄亚丽, 贾振华, 宋水山. 木霉-植物互作机制的研究进展[J]. 中国生物防治学报, 2017, 33(3): 408-414. XU W, HUANG YY, HUANG YL, JIA ZH, SONG SS. Advances on mechanism of Trichoderma-plant interaction[J]. Chinese Journal of Biological Control, 2017, 33(3): 408-414(in Chinese).
    [18] BAIYEE B, PORNSURIYA C, ITO SI, SUNPAPAO A. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria[J]. Biological Control, 2019, 129: 195-200.
    [19] BHARDWAJ M, SALI VK, MANI S, VASANTHI HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and sprague dawley rats[J]. Inflammation, 2020, 43(3): 937-950.
    [20] JOHAN S, JOHAN O, THOMAS B. Fungal volatiles as indicators of food and feeds spoilage[J]. Fungal Genetics and Biology, 1999, 27(2/3): 209-217.
    [21] 李小杰, 李成军, 姚晨虓, 宋瑞芳, 刘畅, 邱睿, 陈玉国, 白静科, 李淑君. 拮抗烟草疫霉菌的木霉菌株筛选鉴定及防病促生作用研究[J]. 中国烟草科学, 2020, 41(3): 65-70. LI XJ, LI CJ, YAO CX, SONG RF, LIU C, QIU R, CHEN YG, BAI JK, LI SJ. Screening, identification of antagonistic Trichoderma spp. against tobacco black shank and its growth promotion effect on tobacco[J]. Chinese Tobacco Science, 2020, 41(3): 65-70(in Chinese).
    [22] 张丽荣, 李鹏, 康萍芝, 杜玉宁, 陈杭. 压砂西瓜枯萎病生防木霉菌筛选及其拮抗机制研究[J]. 河南农业科学, 2018, 47(5): 75-78, 84. ZHANG LR, LI P, KANG PZ, DU YN, CHEN H. Screening and antagonistic mechanism analysis of Trichoderma spp. against Fusarium wilt of watermelon in gravel-mulched land[J]. Journal of Henan Agricultural Sciences, 2018, 47(5): 75-78, 84(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王琪,卢宝慧,王志清,田义新. 防治平贝母菌核病的木霉菌筛选及室内防效[J]. 微生物学通报, 2023, 50(6): 2497-2507

复制
分享
文章指标
  • 点击次数:257
  • 下载次数: 954
  • HTML阅读次数: 731
  • 引用次数: 0
历史
  • 收稿日期:2022-09-01
  • 录用日期:2022-10-10
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码