科微学术

微生物学通报

两种黄素蛋白对奴卡霉素化合物的催化
作者:
基金项目:

山东省自然科学基金(ZR2020MC008)


In vitro biochemical characterization of catalytic reaction of two flavoproteins toward nocamycin derivatives
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】2,4-二酮吡咯烷类化合物奴卡霉素和替达霉素都含有C-10酮基结构,但是该结构是由两种不同的酶短链脱氢酶NcmD和黄素腺嘌呤二核苷酸(flavine adenine dinucleotide, FAD)依赖的脱氢酶TrdL分别催化形成的。然而奴卡霉素生物合成基因簇中的FAD依赖的酶NcmL是否能回补NcmD的功能,以及TrdL能否催化奴卡霉素C-10酮基的形成,尚无相关的实验证据。【目的】通过体外酶催化实验研究NcmL和TrdL对奴卡霉素II和奴卡霉素F的C-10位羟基的催化作用。【方法】通过克隆ncmLtrdL至pET-28a(+)中,然后于大肠杆菌中进行诱导表达。诱导后的蛋白经纯化后,考察了纯化的NcmL和TrdL对奴卡霉素II和奴卡霉素F的催化作用,利用高效液相色谱与高分辨质谱联用技术鉴定了酶反应产物。【结果】NcmL不能催化奴卡霉素II和奴卡霉素F的C-10位羟基的脱氢反应,TrdL能催化奴卡霉素II和奴卡霉素F的C-10位羟基脱氢,分别得到奴卡霉素I和奴卡霉素G。【结论】体外生化研究表明,NcmL不参与奴卡霉素C-10酮基的生物合成反应,TrdL具有较广的底物谱,能催化多种奴卡霉素的C-10位羟基转化为酮基。

    Abstract:

    [Background] The tetramic acid derivatives, nocamycins and tirandamycins, possess C-10 ketone groups, the formation of which is catalyzed by two different enzymes: a short-chain dehydrogenase NcmD and a FAD-dependent dehydrogenase TrdL, respectively. In the biosynthetic pathway of nocamycins, whether the FAD-dependent oxidase NcmL can complement the function of NcmD remains unknown. Additionally, whether TrdL can catalyze the conversion of C-10 hydroxyl group to C-10 ketone group in nocamycins is also unknown. [Objective] To characterize the catalytic roles of NcmL and TrdL in the formation of C-10 ketone groups in nocamycins by using in vitro enzymatic assays. [Methods] The trdL and ncmL genes were respectively cloned into the vector pET-28a(+), and the recombinant vectors were then overexpressed in Escherichia coli BL21. TrdL and NcmL were purified and then used for the in vitro enzymatic assays. Nocamycins F and II were used as substrates and the products generated under the catalysis of NcmL and TrdL were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometer (LC-MS). [Results] NcmL did not catalyze the dehydrogenation occurred on C-10 hydroxyl group. TrdL catalyzed the hydroxyl dehydrogenation at C-10 position in nocamycins II and F, leading to the generation of nocamycins I and G, respectively. [Conclusion] In vitro biochemical assays revealed that NcmL is not involved in formation of C-10 ketone group of nocamycins. TrdL shows a broad substrate spectrum and can catalyze the formation of C-10 ketone group in nocamycins.

    参考文献
    [1] BRAZHNIKOVA MG, KONSTANTINOVA NV, POTAPOVA NP, TOLSTYKH IV. Physicochmemical characteristics of the new antineoplastic antibiotic, nocamycin[J]. Antibiotiki, 1977, 22(6): 486-489.
    [2] MO XH, LI QL, JU JH. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity[J]. RSC Advances, 2014, 4(92): 50566-50593.
    [3] GAUZE GF, SVESHNIKOVA MA, UKHOLINA RS, KOMAROVA GN, BAZHANOV VS. Formation of a new antibiotic, nocamycin, by a culture of Nocardiopsis syringae sp. nov.[J]. Antibiotiki, 1977, 22(6): 483-486.
    [4] TSUKIURA H, TOMITA K, HANADA M, KOBARU S, TSUNAKAWA M, FUJISAWA K, KAWAGUCHI H. Bu-2313, a new antibiotic complex active against anaerobes. I. production, isolation and properties of Bu-2313 A and B[J]. The Journal of Antibiotics, 1980, 33(2): 157-165.
    [5] BANSAL MB, DHAWAN VK, THADEPALLI H. In vitro activity of BU-2313B against anaerobic bacteria[J]. Chemotherapy, 1982, 28(3): 200-203.
    [6] TODA S, NAKAGAWA S, NAITO T, KAWAGUCHI H. Bu-2313, a new antibiotic complex active against anaerobes. III. Semi-synthesis of Bu-2313 A and B, and their analogs[J]. The Journal of Antibiotics, 1980, 33(2): 173-181.
    [7] TUSKE S, SARAFIANOS SG, WANG XY, HUDSON B, SINEVA E, MUKHOPADHYAY J, BIRKTOFT JJ, LEROY O, ISMAIL S, CLARK AD JR, DHARIA C, NAPOLI A, LAPTENKO O, LEE J, BORUKHOV S, EBRIGHT RH, ARNOLD E. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation[J]. Cell, 2005, 122(4): 541-552.
    [8] TEMIAKOV D, ZENKIN N, VASSYLYEVA MN, PEREDERINA A, TAHIROV TH, KASHKINA E, SAVKINA M, ZOROV S, NIKIFOROV V, IGARASHI N, MATSUGAKI N, WAKATSUKI S, SEVERINOV K, VASSYLYEV DG. Structural basis of transcription inhibition by antibiotic streptolydigin[J]. Molecular Cell, 2005, 19(5): 655-666.
    [9] MO XH, SHI CR, GUI C, ZHANG YJ, JU JH, WANG QJ. Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster[J]. Microbial Cell Factories, 2017, 16(1): 100.
    [10] MO XH, GUI C, WANG QJ. Elucidation of a carboxylate O-methyltransferase NcmP in nocamycin biosynthetic pathway[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(18): 4431-4435.
    [11] MO XH, ZHANG H, DU FY, YANG S. Short-chain dehydrogenase NcmD is responsible for the C-10 oxidation of nocamycin F in nocamycin biosynthesis[J]. Frontiers in Microbiology, 2020, 11: 610827.
    [12] MO X, HUANG H, MA J, WANG Z, WANG B, ZHANG S, ZHANG C, JU J. Characterization of TrdL as a 10-hydroxy dehydrogenase and generation of new analogues from a tirandamycin biosynthetic pathway[J]. Organic Letters, 2011,13(9): 2212-2215.
    [13] HANSEN KA, KIM RR, LAWTON ES, TRAN J, LEWIS SK, DEOL AS, van ARNAM EB. Bacterial associates of a desert specialist fungus-growing ant antagonize competitors with a nocamycin analog[J]. ACS Chemical Biology, 2022, 17(7): 1824-1830.
    [14] BEAM MP, BOSSERMAN MA, NOINAJ N, WEHENKEL M, ROHR J. Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway[J]. Biochemistry, 2009, 48(21): 4476-4487.
    [15] JACKSON DR, YU X, WANG G, PATEL AB, CALVERAS J, BARAJAS JF, SASAKI E, METSÄ-KETELÄ M, LIU HW, ROHR J, TSAI SC. Insights into complex oxidation during BE-7585A biosynthesis: structural determination and analysis of the polyketide monooxygenase BexE[J]. ACS Chemical Biology, 2016, 11(4): 1137-1147.
    [16] LIU LK, ABDELWAHAB H, MARTIN DEL CAMPO JS, MEHRA-CHAUDHARY R, SOBRADO P, TANNER JJ. The structure of the antibiotic deactivating, N-hydroxylating rifampicin monooxygenase[J]. Journal of Biological Chemistry, 2016, 291(41): 21553-21562.
    [17] KOSKINIEMI H, METSÄ-KETELÄ M, DOBRITZSCH D, KALLIO P, KORHONEN H, MÄNTSÄLÄ P, SCHNEIDER G, NIEMI J. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis[J]. Journal of Molecular Biology, 2007, 372(3): 633-648.
    [18] WANG P, BASHIRI G, GAO X, SAWAYA MR, TANG Y. Uncovering the enzymes that catalyze the final steps in oxytetracycline biosynthesis[J]. Journal of the American Chemical Society, 2013, 135(19): 7138-7141.
    [19] WESTPHAL AH, TISCHLER D, van BERKEL WJH. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases[J]. Archives of Biochemistry and Biophysics, 2021, 702: 108820.
    [20] MACHEROUX P, KAPPES B, EALICK SE. Flavogenomics: a genomic and structural view of flavin-dependent proteins[J]. The FEBS Journal, 2011, 278(15): 2625-2634.
    [21] DENG YM, ZHOU Q, WU YZ, CHEN X, ZHONG FR. Properties and mechanisms of flavin-dependent monooxygenases and their applications in natural product synthesis[J]. International Journal of Molecular Sciences, 2022, 23(5): 2622.
    [22] HEINE T, van BERKEL WJH, GASSNER G, van PÉE KH, TISCHLER D. Two-component FAD-dependent monooxygenases: current knowledge and biotechnological opportunities[J]. Biology (Basel). 2018, 7(3): 42.
    [23] ZHU HJ, ZHANG B, WANG L, WANG W, LIU SH, IGARASHI Y, BASHIRI G, TAN RX, GE HM. Redox modifications in the biosynthesis of alchivemycin A enable the formation of its key pharmacophore[J]. Journal of the American Chemical Society, 2021, 143(12): 4751-4757.
    [24] PURDY TN, KIM MC, CULLUM R, FENICAL W, MOORE B. Discovery and biosynthesis of tetrachlorizine reveals enzymatic benzylic dehydrogenation via an ortho-quinone methide[J]. Journal of the American Chemical Society, 2021, 143(10): 3682-3686.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵燕,杨松,莫旭华. 两种黄素蛋白对奴卡霉素化合物的催化[J]. 微生物学通报, 2023, 50(6): 2378-2389

复制
相关视频

分享
文章指标
  • 点击次数:328
  • 下载次数: 969
  • HTML阅读次数: 1012
  • 引用次数: 0
历史
  • 收稿日期:2022-09-07
  • 录用日期:2022-10-02
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码