科微学术

微生物学通报

Mn(Ⅱ)氧化细菌Pseudomonas aeruginosa L3的分离、鉴定及氧化特性
作者:
基金项目:

国家自然科学基金(32171622);湖南省大学生创新创业训练计划(S202111535064);湖南省科技创新计划(2022RC1128)


Isolation, identification, and characterization of an Mn(Ⅱ) oxidizing bacterium Pseudomonas aeruginosa L3
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】Mn(Ⅱ)氧化细菌是一类可以沉积和氧化Mn(Ⅱ)从而形成固态锰氧化物的细菌,在生物地球化学和环境修复领域中引起了广泛关注,但目前所研究的Mn(Ⅱ)氧化模式菌株中大多来源海洋,土壤源Mn(Ⅱ)氧化细菌涉及较少。【目的】丰富土壤源Mn(Ⅱ)氧化细菌的来源与物种多样性,同时也为方铁锰矿型Mn2O3的潜在应用提供新菌种。【方法】从湖南省株洲市已关停的清水塘冶炼工业园区内筛选得到一株具有Mn(Ⅱ)氧化能力的铜绿假单胞菌(Pseudomonas aeruginosa) L3,并就其分离纯化、鉴定、生长曲线、pH变化、Mn(Ⅱ)氧化特性及锰氧化物制备等方面进行系统研究。【结果】Pseudomonas aeruginosa L3的菌液离心后的上清液及提取的绿脓菌素(pyocyanin, PYO)均具有Mn(Ⅱ)氧化能力,与菌液相比,上清液对Mn(Ⅱ)氧化的能力更强。进一步利用X射线衍射(X-ray diffraction, XRD)对Pseudomonas aeruginosa L3产生的锰氧化物进行晶相分析,发现该锰氧化物在2θ为32.951°和55.189°处出现了明显的特征峰,表明其结构为弱晶态的方铁锰矿型Mn2O3。【结论】Pseudomonas aeruginosa L3具有较高的Mn(Ⅱ)耐受与氧化能力,与菌液相比,上清液的Mn(Ⅱ)氧化能力更强。所产生的锰氧化物为弱晶态方铁锰矿型Mn2O3,其Mn(Ⅱ)氧化过程可能与绿脓菌素相关。

    Abstract:

    [Background] Mn(Ⅱ)-oxidizing bacteria can precipitate and oxidize Mn(Ⅱ) to form solid manganese oxides, which have attracted much attention in the field of biogeochemistry and environmental remediation. However, most of the studied Mn(Ⅱ)-oxidizing model strains originated from the ocean, and fewer Mn(Ⅱ) oxidizing bacteria from soil sources were involved. [Objective]To enrich the available source of soil-derived Mn(Ⅱ) oxidizing bacteria, and also provide a new strain for the potential application of bixbyite-type Mn2O3.[Methods] In this study, Pseudomonas aeruginosa L3, was isolated from a ceased smelting industrial park at Zhuzhou, Hunan Province, and a systemic assay was conducted on its isolation and purification, identification, growth curves, pH alteration, Mn(Ⅱ) oxidation, and structure of manganese oxide. [Results] The cell suspension, the supernatant after centrifugation, and the pyocyanin extracted from the cell suspension all exhibited the ability to oxidize Mn(Ⅱ). In particular, the supernatant showed a stronger ability for Mn(Ⅱ) oxidation than the cell suspension. The X-ray diffraction (XRD) spectrum was further used to record the crystalline phase of manganese oxide produced by P. aeruginosa L3. The result showed that the manganese oxide had two characteristic peaks at 2θ=32.951° and 55.189°, indicating that its crystalline structure was the poorly-crystalline bixbyite-type Mn2O3.[Conclusion] P. aeruginosa L3 has a high Mn(Ⅱ) tolerance and oxidation ability, and the supernatant has a higher Mn(Ⅱ) oxidation ability than the cell suspension. Its Mn(Ⅱ) oxidation process may be associated with pyocyanin, and the Mn oxides are similar to poorly-crystalline bixbyite-type Mn2O3.

    参考文献
    [1] de VRIND JP, de VRIND-de JONG EW, de VOOGT JW, WESTBROEK P, BOOGERD FC, ROSSON RA. Manganese oxidation by spores and spore coats of a marine Bacillus species[J]. Applied and Environmental Microbiology, 1986, 52(5):1096-1100.
    [2] 段国文, 耿新燕, 魏绪宇, 赵国琰. 锰氧化细菌的生理生态功能与作用机制研究进展[J]. 微生物学通报, 2020, 47(9):3039-3053. DUAN GW, GENG XY, WEI XY, ZHAO GY. Advances in physiological and ecological functions of manganese oxidizing bacteria and the underlying molecular mechanisms[J]. Microbiology China, 2020, 47(9):3039-3053(in Chinese).
    [3] 丁哲旭. 土壤细菌Providencia sp. LLDRA6 Mn(Ⅱ)间接氧化模式的研究[D]. 株洲:湖南工业大学硕士学位论文, 2021. DING ZX. Study on Mn(Ⅱ) indirect oxidation mode by a soil-borne bacterium-Providencia sp. LLDRA6[D]. Zhuzhou:Master's Thesis of Hunan University of Technology, 2021(in Chinese).
    [4] AKOB DM, BOHU T, BEYER A, SCHÄFFNER F, HÄNDEL M, JOHNSON CA, MERTEN D, BÜCHEL G, TOTSCHE KU, KÜSEL K. Identification of Mn(Ⅱ)-oxidizing bacteria from a low-pH contaminated former uranium mine[J]. Applied and Environmental Microbiology, 2014, 80(16):5086-5097.
    [5] LIANG JS, BAI YH, MEN YJ, QU JH. Microbe-microbe interactions trigger Mn(Ⅱ)-oxidizing gene expression[J]. The ISME Journal, 2017, 11(1):67-77.
    [6] YU H, LEADBETTER JR. Bacterial chemolithoautotrophy via Manganese oxidation[J]. Nature, 2020, 583(7816):453-458.
    [7] TEBO BM, JOHNSON HA, MCCARTHY JK, TEMPLETON AS. Geomicrobiology of manganese(Ⅱ) oxidation[J]. Trends in Microbiology, 2005, 13(9):421-428.
    [8] NEALSON KH, TEBO BM, ROSSON RA. Occurrence and mechanisms of microbial oxidation of Manganese[J]. Advances in Applied Microbiology, 1988, 33:279-318.
    [9] TEBO BM. Manganese(Ⅱ) oxidation in the suboxic zone of the Black Sea[J]. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38:S883-S905.
    [10] BARGAR JR, TEBO BM, BERGMANN U, WEBB SM, GLATZEL P, CHIU VQ, VILLALOBOS M. Biotic and abiotic products of Mn(Ⅱ) oxidation by spores of the marine Bacillus sp. strain SG-1[J]. American Mineralogist, 2005, 90(1):143-154.
    [11] 阮小芳. 土壤细菌Providencia sp. LLDRA6及其生物锰氧化物降解有机物的研究[D]. 株洲:湖南工业大学硕士学位论文, 2021. RUAN XF. Study on degradation of organic compounds by soil-bacteria Providencia sp. LLDRA6 and biogenic Mn oxides[D]. Zhuzhou:Master's Thesis of Hunan University of Technology, 2021(in Chinese).
    [12] 张震. 大肠杆菌多铜氧化酶介导的Mn(Ⅱ)氧化作用的分子机制与应用[D]. 武汉:华中农业大学博士学位论文, 2015. ZHANG Z. Molecular mechanism and application of surface-orientated Mn(Ⅱ) oxidation actuated by multicopper oxidase of Escherichia coli[D]. Wuhan:Doctoral Dissertation of Huazhong Agricultural University, 2015(in Chinese).
    [13] 刘凡, 冯雄汉, 陈秀华, 邱国红, 谭文峰, 贺纪正. 氧化锰矿物的生物成因及其性质的研究进展[J]. 地学前缘, 2008, 15(6):66-73. LIU F, FENG XH, CHEN XH, QIU GH, TAN WF, HE JZ. Advances in the study of biological genesis of manganese oxide minerals and their characteristics[J]. Earth Science Frontiers, 2008, 15(6):66-73(in Chinese).
    [14] MATSUSHITA S, KOMIZO D, CAO LTT, AOI Y, KINDAICHI T, OZAKI N, IMACHI H, OHASHI A. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater[J]. Water Research, 2018, 130:224-233.
    [15] SAPUTRA E, MUHAMMAD S, SUN HQ, ANG HM, TADÉ MO, WANG SB. Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions[J]. Applied Catalysis B:Environmental, 2013, 142/143:729-735.
    [16] SHAIKH N, TAUJALE S, ZHANG HC, ARTYUSHKOVA K, ALI AM S, CERRATO JM. Spectroscopic investigation of interfacial interaction of manganese oxide with triclosan, aniline, and phenol[J]. Environmental Science & Technology, 2016, 50(20):10978-10987.
    [17] ZHANG HC, HUANG CH. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12):4474-4483.
    [18] FEITOSA-FELIZZOLA J, HANNA K, CHIRON S. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(Ⅲ) and manganese(IV) oxides[J]. Environmental Pollution, 2009, 157(4):1317-1322.
    [19] BIALK HM, SIMPSON AJ, PEDERSEN JA. Cross-coupling of sulfonamide antimicrobial agents with model humic constituents[J]. Environmental Science & Technology, 2005, 39(12):4463-4473.
    [20] GAO J, HEDMAN C, LIU C, GUO T, PEDERSEN JA. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology, 2012, 46(5):2642-2651.
    [21] de RUDDER J, van de WIELE T, DHOOGE W, COMHAIRE F, VERSTRAETE W. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2)[J]. Water Research, 2004, 38(1):184-192.
    [22] LIU WB, LANGENHOFF AAM, SUTTON NB, RIJNAARTS HHM. Application of manganese oxides under anoxic conditions to remove diclofenac from water[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):5061-5068.
    [23] LI D, LI RY, DING ZX, RUAN XF, LUO J, CHEN JY, ZHENG J, TANG JX. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils[J]. Chemosphere, 2020, 241:125039.
    [24] 李如意. 普罗威登斯属细菌的重金属吸附行为及转录组测序分析[D]. 株洲:湖南工业大学硕士学位论文, 2019. LI RY. Heavy metal adsorption behavior and transcriptome sequencing analysis of Providencia bacteria[D]. Zhuzhou:Master's Thesis of Hunan University of Technology, 2019(in Chinese).
    [25] 王婷婷. 高产电活性的铜绿假单胞菌工程菌株的构建[D]. 天津:天津科技大学硕士学位论文, 2017. WANG TT. The construction of Pseudomonas aeruginosa engineering strains with high bioelectricity activity[D]. Tianjin:Master's Thesis of Tianjin University of Science & Technology, 2017(in Chinese).
    [26] SNYDER M, WANG YT. Mn(Ⅱ) oxidation by batch cultures of Pseudomonas putida strain EC112[J]. Journal of Environmental Engineering, 2015, 141(3):04014066.
    [27] 黄馨. 铁锰对Pseudomonas putida降解单苯环非甾体抗炎药的影响[D]. 天津:天津理工大学硕士学位论文, 2017. HUANG X. Effects of Fe and Mn on single benzene ring nonsteroidal anti-inflammatory drugs degradation by Pseudomonas putida[D]. Tianjin:Master's Thesis of Tianjin University of Technology, 2017(in Chinese).
    [28] 张慧琴, 李艳, 李岩, 丁竑瑞, 鲁安怀. Pseudomonas putida MnB1氧化Mn2+实验研究[J]. 地球与环境, 2013, 41(4):346-352. ZHANG HQ, LI Y, LI Y, DING HR, LU AH. Study on the oxidation of Mn2+ by Pseudomonas putida MnB1[J]. Earth and Environment, 2013, 41(4):346-352(in Chinese).
    [29] 田静. 生物氧化锰对Pb(Ⅱ)/Zn(Ⅱ)的吸附及对As(Ⅲ)/Cr(Ⅲ)的氧化[D]. 武汉:华中农业大学硕士学位论文, 2013. TIAN J. The adsorption of Pb(Ⅱ)/Zn(Ⅱ) and the oxidation of As(Ⅲ)/Cr(Ⅲ) of biogenic manganese oxide[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2013(in Chinese).
    [30] 李泽. 基于微生物培养组学分离新型锰氧化细菌及锰氧化机理研究[D]. 沈阳:辽宁大学硕士学位论文, 2022. LI Z. Isolation and Manganese oxidation mechanism of novel Mn-oxidizing bacteria based on microbial culturomics[D]. Shenyang:Master's Thesis of Liaoning University, 2022(in Chinese).
    [31] de VRIND J, de GROOT A, BROUWERS GJ, TOMMASSEN J, de VRIND-de JONG E. Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1[J]. Molecular Microbiology, 2003, 47(4):993-1006.
    [32] LEE SW, PARKER DL, GESZVAIN K, TEBO BM. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(Ⅱ) oxidation by Pseudomonas putida GB-1[J]. Frontiers in Microbiology, 2014, 5:301.
    [33] BROUWERS GJ, de VRIND JP, CORSTJENS PL, CORNELIS P, BAYSSE C, de VRIND-de JoNG EW. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1[J]. Applied and Environmental Microbiology, 1999, 65(4):1762-1768.
    [34] FRANCIS CA, TEBO BM. cumA multicopper oxidase genes from diverse Mn(Ⅱ)-oxidizing and non-Mn(Ⅱ)-oxidizing Pseudomonas strains[J]. Applied and Environmental Microbiology, 2001, 67(9):4272-4278.
    [35] 何智敏. 锰氧化细菌的选育及其生物氧化锰对土霉素的降解特性研究[D]. 杭州:浙江工业大学硕士学位论文, 2013. HE ZM. Mn(Ⅱ)-oxidizing bacteria screening and the degradation characteristics of OTC by biogenic manganese oxides[D]. Hangzhou:Master's Thesis of Zhejiang University of Technology, 2013(in Chinese).
    [36] LI HL, WU Y, TANG YK, FANG B, LUO PH, YANG LL, JIANG QM. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01:capabilities of Mn(Ⅱ) immobilization, plant growth promotion and biofilm formation[J]. Environmental Pollution, 2022, 309:119775.
    [37] ADAMS LF, GHIORSE WC. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1[J]. Geochimica et Cosmochimica Acta, 1988, 52(8):2073-2076.
    [38] OKAZAKI M, SUGITA T, SHIMIZU M, OHODE Y, IWAMOTO K, de VRIND-de JONG EW, de VRIND JP, CORSTJENS PL. Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1[J]. Applied and Environmental Microbiology, 1997, 63(12):4793-4799.
    [39] EMERSON D, GHIORSE WC. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath[J]. Applied and Environmental Microbiology, 1992, 58(12):4001-4010.
    [40] WANG Y, NEWMAN DK. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen[J]. Environmental Science & Technology, 2008, 42(7):2380-2386.
    [41] COX CD. Role of pyocyanin in the acquisition of iron from transferrin[J]. Infection and Immunity, 1986, 52(1):263-270.
    [42] BANIN E, VASIL ML, GREENBERG EP. Iron and Pseudomonas aeruginosa biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):11076-11081.
    [43] RESZKA KJ, O'MALLEY Y, MCCORMICK ML, DENNING GM, BRITIGAN BE. Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide[J]. Free Radical Biology and Medicine, 2004, 36(11):1448-1459.
    [44] PARKER DL, LEE SW, GESZVAIN K, DAVIS RE, GRUFFAZ C, MEYER JM, TORPEY JW, TEBO BM. Pyoverdine synthesis by the Mn(Ⅱ)-oxidizing bacterium Pseudomonas putida GB-1[J]. Frontiers in Microbiology, 2014, 5:202.
    [45] KRAMER J, ÖZKAYA Ö, KÜMMERLI R. Bacterial siderophores in community and host interactions[J]. Nature Reviews Microbiology, 2020, 18(3):152-163.
    [46] LI JH. Real-time observation of pyoverdine dissolving ferric hydroxide[J]. Chinese Journal of Chemical Physics, 2017, 30(1):117-122.
    [47] CASPI R, TEBO BM, HAYGOOD MG. C-type cytochromes and Manganese oxidation in Pseudomonas putida MnB1[J]. Applied and Environmental Microbiology, 1998, 64(10):3549-3555.
    [48] EL GHERIANY IA, BOCIOAGA D, HAY AG, GHIORSE WC, SHULER ML, LION LW. Iron requirement for Mn(Ⅱ) oxidation by Leptothrix discophora SS-1[J]. Applied and Environmental Microbiology, 2009, 75(5):1229-1235.
    [49] SARATOVSKY I, WIGHTMAN PG, PASTÉN PA, GAILLARD JF, POEPPELMEIER KR. Manganese oxides:parallels between abiotic and biotic structures[J]. Journal of the American Chemical Society, 2006, 128(34):11188-11198.
    [50] CHEN S, DING ZX, CHEN JY, LUO J, RUAN XF, LI ZP, LIAO FF, HE J, LI D. A soil-borne Mn(Ⅱ)-oxidizing bacterium of Providencia sp. exploits a strategy of superoxide production coupled to hydrogen peroxide consumption to generate Mn oxides[J]. Archives of Microbiology, 2022, 204(3):168.
    [51] LI ZP, LIAO FF, DING ZX, CHEN S, LI D. Providencia manganoxydans sp. nov., a Mn(Ⅱ)-oxidizing bacterium isolated from heavy metal contaminated soils in Hunan Province, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(8):005474.
    相似文献
    引证文献
引用本文

廖凤凤,单美丽,牟琼丽,陈莎,李宗培,李丁. Mn(Ⅱ)氧化细菌Pseudomonas aeruginosa L3的分离、鉴定及氧化特性[J]. 微生物学通报, 2023, 50(5): 1787-1800

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-04
  • 录用日期:2022-10-21
  • 在线发布日期: 2023-05-06
  • 出版日期: 2023-05-20
文章二维码