科微学术

微生物学通报

土壤微生物群落对全球气候变化响应的研究进展
作者:
基金项目:

国家重点研发计划(2017YFA0605003);国家自然科学基金重点项目(U1901212)


Responses of soil microbial community to global climate change: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [129]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    全球气候变化对陆地生态系统过程和功能产生重要影响,土壤微生物群落在陆地生态系统几乎所有的生物地球化学循环过程起到关键作用。本文针对气候变化对土壤微生物的影响研究结果,主要从土壤微生物活性(土壤呼吸与酶活性)和微生物群落结构对大气CO2升高、增温、降水变化、氮沉降等全球变化单因子和多因子的直接或间接响应进行综述,并进一步阐述参与土壤碳氮循环过程的功能微生物对气候变化的响应机制与适应规律。全球变化因子改变了土壤微生物的群落组成,呈现降低、增加和无影响3种效应,且不同功能微生物也呈现不同的敏感性。多个全球变化因子对土壤微生物群落结构的交互效应可能存在加性、协同、拮抗作用,产生加和的、相互促进或抵消的整体效果。然而,目前对多种全球变化因子如三因子或四因子的组合作用,以及多因子的高阶交互作用研究较少;已有的研究地理分布不均匀,且时间和空间大尺度的研究不足;缺乏综合生态系统模型对全球变化的影响进行模拟和预测。最后指出今后的研究发展方向:进行多种全球变化因子、长时间、多生态系统点位、大空间尺度的土壤微生物群落动态研究;探究多种全球变化因子的高阶交互作用;建立综合响应的生态系统模型,精确全球气候变化及其交互作用对土壤微生物群落影响的估算。这将有助于准确预测未来全球气候变化情景下生态系统尤其是土壤微生物生态系统的响应,为生态系统的可持续发展提供科学基础。

    Abstract:

    Global climate change affects the processes and functions of terrestrial ecosystems where soil microbial community plays a crucial role in almost all of the biogeochemical cycles. Here, we reviewed the direct and indirect responses of soil microbial activities (e.g., soil respiration and enzyme activities) and community structure to individual and multiple global change factors, including elevated CO2 concentration, warming, altered precipitation, and nitrogen deposition. Besides, we summarized the mechanisms for the adaptation of soil microbial community and the responses of functional microorganisms involved in soil carbon and nitrogen cycle to climate change. Generally, these global change factors may have positive, negative, or insignificant effects on soil microbial communities, and different functional microorganisms also showed different sensitivity to them. Moreover, the interactive effect of multiple global change factors on soil microbial community structure may be additive, synergistic, or antagonistic. However, there is a paucity of research on the combined effects of multiple global change factors, such as three, four, and even more factors. In addition, the distribution of the studied areas is uneven, and studies involving various ecosystems with large spatial and temporal scale are scarce. No comprehensive ecosystem model is available to simulate and predict the effects of global change on soil microbial communities. Finally, we summarized the research trends: (1) dynamic monitoring of soil microbial communities in multiple ecosystems in large spatial scale for a long time involving multiple global change factors, (2) the interaction of multiple global change factors, and (3) development of comprehensive ecosystem model to accurately estimate the impact of global climate change and factors’ interaction on soil microbial community. These will help to accurately predict the response of ecosystem, especially soil microbial ecosystems, under future global climate change scenarios, and lay a basis for the sustainable development of ecosystems.

    参考文献
    [1] IPCC, 2021:Summary for Policymakers[M]//MASSON-DELMOTTE V, ZHAI P, PIRANI A, CONNORS SL, PÉAN C, BERGER S, CAUD N, CHEN Y, GOLDFARB L, GOMIS MI, HUANG M, LEITZEDLL K, LONNOY E, MATTHEWS JBR, MAYCOCK TK, WATERFIELD T, YELEKÇI O, YU R, ZHOU B, eds. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA:Cambridge University Press, 2021:3-32.
    [2] REAY DS, DENTENER F, SMITH P, GRACE J, FEELY RA. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7):430-437.
    [3] GALLOWAY JN, COWLING EB. Reactive nitrogen and the world:200 years of change[J]. Ambio, 2002, 31(2):64-71.
    [4] 杨思航. 气候多因子对典型温带草原土壤微生物群落的影响研究[D]. 北京:清华大学博士学位论文, 2019.YANG SH. Effects of multiple climate changes on soil microbial communities in a typical temperate grassland in the United States[D]. Beijing:Doctoral Dissertation of Tsinghua University, 2019 (in Chinese).
    [5] LOCEY KJ, LENNON JT. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21):5970-5975.
    [6] CROWTHER TW, van den HOOGEN J, WAN J, MAYES MA, KEISER AD, MO L, AVERILL C, MAYNARD DS. The global soil community and its influence on biogeochemistry[J]. Science, 2019, 365(6455):eaav0550.
    [7] KAPPLER A, BRYCE C, MANSOR M, LUEDER U, BYRNE JM, SWANNER ED. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6):360-374.
    [8] LI ZL, TIAN DS, WANG BX, WANG JS, WANG S, CHEN HYH, XU XF, WANG CH, HE NP, NIU SL. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3):1078-1088.
    [9] GAO Q, YANG YF, FENG JJ, TIAN RM, GUO X, NING DL, HALE L, WANG MM, CHENG JM, WU LW, ZHAO MX, ZHAO JS, WU LY, QIN YJ, QI Q, LIANG YT, SUN B, CHU HY, ZHOU JZ. The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil[J]. Global Ecology and Biogeography, 2019, 28(8):1093-1105.
    [10] RILLIG MC, RYO M, LEHMANN A, AGUILAR-TRIGUEROS CA, BUCHERT S, WULF A, IWASAKI A, ROY J, YANG GW. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467):886-890.
    [11] XUE K, M YUAN M, SHI ZJ, QIN YJ, DENG Y, CHENG L, WU LY, HE ZL, van NOSTRAND JD, BRACHO R, NATALI S, SCHUUR EAG, LUO CW, KONSTANTINIDIS KT, WANG Q, COLE JR, TIEDJE JM, LUO YQ, ZHOU JZ. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6):595-600.
    [12] LIU H, YE Q, WIENS JJ. Climatic-niche evolution follows similar rules in plants and animals[J]. Nature Ecology & Evolution, 2020, 4(5):753-763.
    [13] 马星宇. 我国典型草原和森林土壤微生物对多因子扰动的响应[D]. 北京:清华大学博士学位论文, 2018.MA XY. Response traits of soil microbial communities to multi-factor environmental disturbances in the typical grassland and forest of China[D]. Beijing:Doctoral Dissertation of Tsinghua University, 2018 (in Chinese).
    [14] Li YQ, MA JW, YU Y, LI YJ, SHEN XY, HUO SL, XIA XH. Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances:a meta-analysis[J]. Science of the Total Environment, 2022, 815:152737.
    [15] LIU Y, ZHANG H, XIONG MH, LI F, LI LQ, WANG GL, PAN GX. Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature[J]. Biology and Fertility of Soils, 2017, 53(1):3-8.
    [16] XIONG L, LIU XY, VINCI G, SPACCINI R, DROSOS M, LI LQ, PICCOLO A, PAN GX. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air[J]. Soil Biology and Biochemistry, 2019, 137:107544.
    [17] LIPSON DA, KUSKE CR, GALLEGOS-GRAVES LV, OECHEL WC. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem[J]. Global Change Biology, 2014, 20(8):2555-2565.
    [18] 贾夏, 韩士杰, 赵永华, 周玉梅. 大气CO2浓度升高对长白赤松幼苗土壤酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(12):87-92, 98.JIA X, HAN SJ, ZHAO YH, ZHOU YM. Effects of elevated CO2 on soil enzyme activities associated with Pinus sylvestriformis seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(12):87-92, 98 (in Chinese).
    [19] CHEN Y, ZHANG YJ, BAI E, PIAO SL, CHEN N, ZHAO G, ZHENG ZT, ZHU YX. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition[J]. The Science of the Total Environment, 2022, 813:151907.
    [20] HAYDEN HL, MELE PM, BOUGOURE DS, ALLAN CY, NORNG S, PICENO YM, BRODIE EL, DeSANTIS TZ, ANDERSEN GL, WILLIAMS AL, HOVENDEN MJ. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil[J]. Environmental Microbiology, 2012, 14(12):3081-3096.
    [21] TU QC, HE ZL, WU LY, XUE K, XIE G, CHAIN P, REICH PB, HOBBIE SE, ZHOU JZ. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem[J]. Soil Biology and Biochemistry, 2017, 106:99-108.
    [22] 许淼平, 任成杰, 张伟, 陈正兴, 付淑月, 刘伟超, 杨改河, 韩新辉. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7):2445-2454.XU MP, REN CJ, ZHANG W, CHEN ZX, FU SY, LIU WC, YANG GH, HAN XH. Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 2018, 29(7):2445-2454 (in Chinese).
    [23] NAYLOR D, SADLER N, BHATTACHARJEE A, GRAHAM EB, ANDERTON CR, McCLURE R, LIPTON M, HOFMOCKEL KS, JANSSON JK. Soil microbiomes under climate change and implications for carbon cycling[J]. Annual Review of Environment and Resources, 2020, 45:29-59.
    [24] TERRER C, VICCA S, STOCKER BD, HUNGATE BA, PHILLIPS RP, REICH PB, FINZI AC, PRENTICE IC. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition[J]. New Phytologist, 2018, 217(2):507-522.
    [25] 房蕊, 于镇华, 李彦生, 谢志煌, 刘俊杰, 王光华, 刘晓冰, 陈渊, 刘居东, 张少庆, 吴俊江, Stephen J HERBERT, 金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17):3666-3679.FANG R, YU ZH, LI YS, XIE ZH, LIU JJ, WANG GH, LIU XB, CHEN Y, LIU JD, ZHANG SQ, WU JJ, HERBERT S, JIN J. Effects of elevated CO2 concentration and warming on soil carbon pools and microbial community composition in farming soil[J]. Scientia Agricultura Sinica, 2021, 54(17):3666-3679 (in Chinese).
    [26] 王光州, 贾吉玉, 张俊伶. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展[J]. 生态学报, 2021, 41(23):9130-9143.WANG GZ, JIA JY, ZHANG JL. Plant soil feedback theory and its applications and prospects in natural and agricultural ecosystems[J]. Acta Ecologica Sinica, 2021, 41(23):9130-9143 (in Chinese).
    [27] JANSSON C, VOGEL J, HAZEN S, BRUTNELL T, MOCKLER T. Climate-smart crops with enhanced photosynthesis[J]. Journal of Experimental Botany, 2018, 69(16):3801-3809.
    [28] QIAO N, SCHAEFER D, BLAGODATSKAYA E, ZOU XM, XU XL, KUZYAKOV Y. Labile carbon retention compensates for CO2 released by priming in forest soils[J]. Global Change Biology, 2014, 20(6):1943-1954.
    [29] JANSSON JK, HOFMOCKEL KS. Soil microbiomes and climate change[J]. Nature Reviews Microbiology, 2020, 18(1):35-46.
    [30] HU S, CHAPIN FS, FIRESTONE MK, FIELD CB, CHIARIELLO NR. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J]. Nature, 2001, 409(6817):188-191.
    [31] ZHOU LY, ZHOU XH, SHAO JJ, NIE YY, HE YH, JIANG LL, WU ZT, BAI SH. Interactive effects of global change factors on soil respiration and its components:a meta-analysis[J]. Global Change Biology, 2016, 22(9):3157-3169.
    [32] NIE M, LU M, BELL J, RAUT S, PENDALL E. Altered root traits due to elevated CO2:a meta-analysis[J]. Global Ecology and Biogeography, 2013, 22(10):1095-1105.
    [33] 李奕霏, 肖谋良, 袁红朝, 祝贞科, 王久荣, 李科林, 葛体达, 吴金水. CO2倍增对稻田土壤碳氮水解酶活性的影响[J]. 中国环境科学, 2018, 38(9):3474-3480.LI YF, XIAO ML, YUAN HC, ZHU ZK, WANG JR, LI KL, GE TD, WU JS. Effects of doubled concentration of CO2 on soil hydrolase activities related to turnover of soil C and N in a rice-cropping system[J]. China Environmental Science, 2018, 38(9):3474-3480 (in Chinese).
    [34] XIAO W, CHEN X, JING X, ZHU B. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018, 123:21-32.
    [35] DUNBAR J, EICHORST SA, GALLEGOS-GRAVES LV, SILVA S, XIE G, HENGARTNER NW, DAVID EVANS R, HUNGATE BA, JACKSON RB, MEGONIGAL JP, SCHADT CW, VILGALYS R, ZAK DR, KUSKE CR. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J]. Environmental Microbiology, 2012, 14(5):1145-1158.
    [36] DELTEDESCO E, KEIBLINGER KM, PIEPHO HP, ANTONIELLI L, PÖTSCH EM, ZECHMEISTER- BOLTENSTERN S, GORFER M. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment[J]. Soil Biology and Biochemistry, 2020, 142:107704.
    [37] JASTROW JD, MICHAEL MILLER R, MATAMALA R, NORBY RJ, BOUTTON TW, RICE CW, OWENSBY CE. Elevated atmospheric carbon dioxide increases soil carbon[J]. Global Change Biology, 2005, 11(12):2057-2064.
    [38] YU H, HE ZL, WANG AJ, XIE JP, WU LY, van NOSTRAND JD, JIN DC, SHAO ZM, SCHADT CW, ZHOU JZ, DENG Y. Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers[J]. Applied and Environmental Microbiology, 2018, 84(1):e01694-e01617.
    [39] YU H, DENG Y, HE ZL, van NOSTRAND JD, WANG S, JIN DC, WANG AJ, WU LY, WANG DH, TAI X, ZHOU JZ. Elevated CO2 and warming altered grassland microbial communities in soil top-layers[J]. Frontiers in Microbiology, 2018, 9:1790.
    [40] 马志良, 赵文强, 刘美, 刘庆. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 2019, 30(6):1893-1900.MA ZL, ZHAO WQ, LIU M, LIU Q. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(6):1893-1900 (in Chinese).
    [41] ZUCCARINI P, ASENSIO D, OGAYA R, SARDANS J, PEÑUELAS J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Global Change Biology, 2020, 26(6):3698-3714.
    [42] 黄石德. 武夷山不同海拔土壤呼吸对变暖和变冷的响应[J]. 生态学杂志, 2022, 41(1):98-107.HUANG SD. Responses of soil respiration to warming and cooling at different elevations of Wuyi Mountain[J]. Chinese Journal of Ecology, 2022, 41(1):98-107 (in Chinese).
    [43] MORRISON EW, PRINGLE A, van DIEPEN LT, MELILLO J, FREY SD. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks[J]. Soil Biology and Biochemistry, 2019, 132:120-130.
    [44] DONHAUSER J, NIKLAUS PA, ROUSK J, LAROSE C, FREY B. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils[J]. Soil Biology and Biochemistry, 2020, 148:107873.
    [45] LU M, ZHOU XH, YANG Q, LI H, LUO YQ, FANG CM, CHEN JK, YANG X, LI B. Responses of ecosystem carbon cycle to experimental warming:a meta-analysis[J]. Ecology, 2013, 94(3):726-738.
    [46] WANG X, LIU LL, PIAO SL, JANSSENS IA, TANG JW, LIU WX, CHI YG, WANG J, XU S. Soil respiration under climate warming:differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10):3229-3237.
    [47] MELILLO JM, FREY SD, DeANGELIS KM, WERNER WJ, BERNARD MJ, BOWLES FP, POLD G, KNORR MA, GRANDY AS. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science, 2017, 358(6359):101-105.
    [48] BRADFORD MA, DAVIES CA, FREY SD, MADDOX TR, MELILLO JM, MOHAN JE, REYNOLDS JF, TRESEDER KK, WALLENSTEIN MD. Thermal adaptation of soil microbial respiration to elevated temperature[J]. Ecology Letters, 2008, 11(12):1316-1327.
    [49] CHEN J, LUO YQ, GARCÍA-PALACIOS P, CAO JJ, DACAL M, ZHOU XH, LI JW, XIA JY, NIU SL, YANG HY, SHELTON S, GUO W, van GROENIGEN KJ. Differential responses of carbon-degrading enzyme activities to warming:implications for soil respiration[J]. Global Change Biology, 2018, 24(10):4816-4826.
    [50] 张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制[J]. 生态学杂志, 2020, 39(2):655-664.ZHANG H, WU HT. Research progresses in effects of climate warming on soil fauna community structure[J]. Chinese Journal of Ecology, 2020, 39(2):655-664 (in Chinese).
    [51] SOFI JA, LONE AH, GANIE MA, DAR NA, BHAT SA, MUKHTAR M, DAR MA, RAMZAN S. Soil microbiological activity and carbon dynamics in the current climate change scenarios:a review[J]. Pedosphere, 2016, 26(5):577-591.
    [52] 高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13):4617-4627.GAO SQ, SONG YY, SONG CC, MA XY, JIANG L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020, 40(13):4617-4627 (in Chinese).
    [53] ALLISON SD, TRESEDER KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2008, 14(12):2898-2909.
    [54] ROMERO-OLIVARES AL, ALLISON SD, TRESEDER KK. Soil microbes and their response to experimental warming over time:a meta-analysis of field studies[J]. Soil Biology and Biochemistry, 2017, 107:32-40.
    [55] ZHOU JZ, XUE K, XIE JP, DENG Y, WU LY, CHENG XL, FEI SF, DENG SP, HE ZL, van NOSTRAND JD, LUO YQ. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change, 2012, 2(2):106-110.
    [56] ZHANG QF, ZHOU JC, LI XJ, ZHENG Y, XIE L, YANG ZJ, LIU XF, XU C, LIN HY, YUAN XC, LIU C, ZHU B, CHEN Y, YANG YS. Contrasting effects of warming and N deposition on soil microbial functional genes in a subtropical forest[J]. Geoderma, 2022, 408:115588.
    [57] SCHINDLBACHER A, RODLER A, KUFFNER M, KITZLER B, SESSITSCH A, ZECHMEISTER- BOLTENSTERN S. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology & Biochemistry, 2011, 43(7):1417-1425.
    [58] AKINYEMI DS, ZHU YK, ZHAO MY, ZHANG PJ, SHEN HH, FANG JY. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia[J]. Global Ecology and Conservation, 2020, 23:e01175.
    [59] 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3):309-320.ZHU WW, WANG P, XU YX, LI CH, YU HL, HUANG JY. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition[J]. Chinese Journal of Plant Ecology, 2021, 45(3):309-320 (in Chinese).
    [60] 陶冬雪, 李文瑾, 杨恬, 柯玉广, 徐翀, 赵晋灵, 吴红慧, 庾强. 降水变化和养分添加对呼伦贝尔草甸草原土壤呼吸的影响[J]. 生态学杂志, 2022, 41(3):465-472.TAO DX, LI WJ, YANG T, KE YG, XU C, ZHAO JL, WU HH, YU Q. Effects of precipitation change and nutrient addition on soil respiration in Hulunber meadow steppe[J]. Chinese Journal of Ecology, 2022, 41(3):465-472 (in Chinese).
    [61] 聂园园, 周贵尧, 邵钧炯, 周灵燕, 刘瑞强, 翟德苹, 周旭辉. 模拟干旱对亚热带森林土壤微生物生物量及群落结构的影响[J]. 复旦学报(自然科学版), 2017, 56(1):97-105.NIE YY, ZHOU GY, SHAO JJ, ZHOU LY, LIU RQ, ZHAI DP, ZHOU XH. Effects of simulating drought on soil microbial biomass and community structure in subtropical forest[J]. Journal of Fudan University (Natural Science), 2017, 56(1):97-105 (in Chinese).
    [62] GUADARRAMA P, CASTILLO S, RAMOS-ZAPATA JA, HERNÁNDEZ-CUEVAS LV, CAMARGO- RICALDE SL. Arbuscular mycorrhizal fungal communities in changing environments:the effects of seasonality and anthropogenic disturbance in a seasonal dry forest[J]. Pedobiologia, 2014, 57(2):87-95.
    [63] HUANG JP, YU HP, GUAN XD, WANG GY, GUO RX. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2):166-171.
    [64] MCHUGH TA, COMPSON Z, van GESTEL N, HAYER M, BALLARD L, HAVERTY M, HINES J, IRVINE N, KRASSNER D, LYONS T, MUSTA EJ, SCHIFF M, ZINT P, SCHWARTZ E. Climate controls prokaryotic community composition in desert soils of the southwestern United States[J]. FEMS Microbiology Ecology, 2017, 93(10):fix116.
    [65] MI J, LI JJ, CHEN DM, XIE YC, BAI YF. Predominant control of moisture on soil organic carbon mineralization across a broad range of arid and semiarid ecosystems on the Mongolia Plateau[J]. Landscape Ecology, 2015, 30(9):1683-1699.
    [66] 李博文, 王奇, 吕汪汪, 周阳, 姜丽丽, 刘培培, 孟凡栋, 张立荣, 张苏人, 阿旺, 李耀明, 斯确多吉, 汪诗平. 增温增水对草地生态系统碳循环关键过程的影响[J]. 生态学报, 2021, 41(4):1668-1679.LI BW, WANG Q, LÜ WW, ZHOU Y, JIANG LL, LIU PP, MENG FD, ZHANG LR, ZHANG SR, A WANG, LI YM, TSECHOE DJ. The effects of warming and added water on key processes of grassland carbon cycle[J]. Acta Ecologica Sinica, 2021, 41(4):1668-1679 (in Chinese).
    [67] 朱义族, 李雅颖, 韩继刚, 姚槐应. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12):4323-4332.ZHU YZ, LI YY, HAN JG, YAO HY. Effects of changes in water status on soil microbes and their response mechanism:a review[J]. Chinese Journal of Applied Ecology, 2019, 30(12):4323-4332 (in Chinese).
    [68] LOOBY CI, TRESEDER KK. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest[J]. Soil Biology and Biochemistry, 2018, 117:87-96.
    [69] de VRIES FT, GRIFFITHS RI, BAILEY M, CRAIG H, GIRLANDA M, GWEON HS, HALLIN S, KAISERMANN A, KEITH AM, KRETZSCHMAR M, LEMANCEAU P, LUMINI E, MASON KE, OLIVER A, OSTLE N, PROSSER JI, THION C, THOMSON B, BARDGETT RD. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9:3033.
    [70] GUHR A, BORKEN W, SPOHN M, MATZNER E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47):14647-14651.
    [71] JIA YY, van der HEIJDEN MGA, WAGG C, FENG G, WALDER F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition[J]. Journal of Ecology, 2021, 109(9):3171-3181.
    [72] CROWE JH, CROWE LM, CHAPMAN D. Preservation of membranes in anhydrobiotic organisms:the role of trehalose[J]. Science, 1984, 223(4637):701-703.
    [73] PREECE C, VERBRUGGEN E, LIU L, WEEDON JT, PENUELAS J. Effects of past and current drought on the composition and diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 131:28-39.
    [74] BARNARD RL, OSBORNE CA, FIRESTONE MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 2013, 7(11):2229-2241.
    [75] BRANGARI AC, LYONNARD B, ROUSK J. Soil depth and tillage can characterize the soil microbial responses to drying-rewetting[J]. Soil Biology and Biochemistry, 2022, 173:108806.
    [76] MEISNER A, LEIZEAGA A, ROUSK J, BAATH E. Partial drying accelerates bacterial growth recovery to rewetting[J]. Soil Biology and Biochemistry, 2017, 112:269-276.
    [77] POINTING SB, BELNAP J. Microbial colonization and controls in dryland systems[J]. Nature Reviews Microbiology, 2012, 10(8):551-562.
    [78] NAYLOR D, DEGRAAF S, PURDOM E, COLEMAN-DERR D. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal, 2017, 11(12):2691-2704.
    [79] HERZOG C, HARTMANN M, FREY B, STIERLI B, RUMPEL C, BUCHMANN N, BRUNNER I. Microbial succession on decomposing root litter in a drought-prone Scots pine forest[J]. The ISME Journal, 2019, 13(9):2346-2362.
    [80] ANDERUD ZT, JONES SE, FIERER N, LENNON JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity[J]. Frontiers in Microbiology, 2015, 6:24.
    [81] 吴建波, 王小丹. 藏北高寒草原土壤酶活性对氮添加的响应及其影响因素[J]. 草地学报, 2021, 29(3):555-562.WU JB, WANG XD. Responses of soil enzyme activities to nitrogen addition and its impact factors at the alpine steppe of northern Tibet[J]. Acta Agrestia Sinica, 2021, 29(3):555-562 (in Chinese).
    [82] 魏枫, 王慧娟, 邱秀文, 周桂香, 杨丽丽, 郭晓敏. 模拟氮沉降对樟树人工林土壤酶活性的影响[J]. 江苏农业科学, 2019, 47(19):129-133.WEI F, WANG HJ, QIU XW, ZHOU GX, YANG LL, GUO XM. Effects of simulated nitrogen deposition on soil enzyme activities in Cinnamomum camphora plantation[J]. Jiangsu Agricultural Sciences, 2019, 47(19):129-133 (in Chinese).
    [83] FREY SD, KNORR M, PARRENT JL, SIMPSON RT. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1):159-171.
    [84] 隋心, 张荣涛, 刘赢男, 许楠, 倪红伟. 模拟氮沉降对三江平原小叶章湿地土壤微生物功能多样性的影响[J]. 草地学报, 2016, 24(6):1226-1233.SUI X, ZHANG RT, LIU YN, XU N, NI HW. Influence of simulation nitrogen deposition on soil microbial functional diversity of Calamagrostis angustifolia wetland in Sanjiang plain[J]. Acta Agrestia Sinica, 2016, 24(6):1226-1233 (in Chinese).
    [85] 王丽君, 程瑞梅, 肖文发, 孙鹏飞, 沈雅飞, 曾立雄, 陈天. 氮添加对三峡库区马尾松-栓皮栎混交林土壤微生物生物量和酶活性的影响[J]. 应用生态学报, 2022, 33(1):42-50.WANG LJ, CHENG RM, XIAO WF, SUN PF, SHEN YF, ZENG LX, CHEN T. Effects of nitrogen addition on soil microbial biomass and enzyme activities of Pinus massoniana-Quercus variabilis mixed plantations in the Three Gorges Reservoir Area[J]. Chinese Journal of Applied Ecology, 2022, 33(1):42-50 (in Chinese).
    [86] WANG C, LIU DW, BAI E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology and Biochemistry, 2018, 120:126-133.
    [87] ZHANG TA, CHEN HYH, RUAN HH. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7):1817-1825.
    [88] 李素新, 覃志杰, 刘泰瑞, 郭晋平. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响[J]. 水土保持学报, 2020, 34(1):268-274.LI SX, TAN ZJ, LIU TR, GUO JP. Effects of simulated nitrogen deposition on soil microbial carbon and nitrogen dynamics of Larix principis-rupprechtii plantation[J]. Journal of Soil and Water Conservation, 2020, 34(1):268-274 (in Chinese).
    [89] LU M, ZHOU XH, LUO YQ, YANG YH, FANG CM, CHEN JK, LI B. Minor stimulation of soil carbon storage by nitrogen addition:a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2):234-244.
    [90] ZHOU LY, ZHOU XH, ZHANG BC, LU M, LUO YQ, LIU LL, LI B. Different responses of soil respiration and its components to nitrogen addition among biomes:a meta-analysis[J]. Global Change Biology, 2014, 20(7):2332-2343.
    [91] SHA MH, XU J, ZHENG ZC, FA KY. Enhanced atmospheric nitrogen deposition triggered little change in soil microbial diversity and structure in a desert ecosystem[J]. Global Ecology and Conservation, 2021, 31:e01879.
    [92] CHEN YL, XU ZW, XU TL, VERESOGLOU SD, YANG GW, CHEN BD. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2017, 115:233-242.
    [93] VANCE ED, CHAPIN FS. Substrate limitations to microbial activity in taiga forest floors[J]. Soil Biology and Biochemistry, 2001, 33(2):173-188.
    [94] RAMIREZ KS, CRAINE JM, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6):1918-1927.
    [95] EISENLORD SD, FREEDMAN Z, ZAK DR, XUE K, HE ZL, ZHOU JZ. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition[J]. Applied and Environmental Microbiology, 2013, 79(4):1191-1199.
    [96] SIMONIN M, LE ROUX X, POLY F, LERONDELLE C, HUNGATE BA, NUNAN N, NIBOYET A. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply[J]. Microbial Ecology, 2015, 70(3):809-818.
    [97] MA WB, JIANG SJ, ASSEMIEN F, QIN MS, MA BB, XIE Z, LIU YJ, FENG HY, DU GZ, MA XJ, LE ROUX X. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows[J]. Soil Biology and Biochemistry, 2016, 101:195-206.
    [98] NIE YX, HAN XG, CHEN J, WANG MC, SHEN WJ. The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil[J]. Biogeosciences, 2019, 16(21):4277-4291.
    [99] LIU Y, GAO K, GUO ZH, LIU XY, BIAN RJ, SUN BB, LI J, CHEN JH. An antagonistic effect of elevated CO2 and warming on soil N2O emissions related to nitrifier and denitrifier communities in a Chinese wheat field[J]. Plant and Soil, 2022, 470(1):97-110.
    [100] SCHIMEL J, BALSER TC, WALLENSTEIN M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6):1386-1394.
    [101] SHEIK CS, BEASLEY WH, ELSHAHED MS, ZHOU XH, LUO YQ, KRUMHOLZ LR. Effect of warming and drought on grassland microbial communities[J]. The ISME Journal, 2011, 5(10):1692-1700.
    [102] LI GL, KIM S, HAN SH, CHANG HN, DU DL, SON Y. Precipitation affects soil microbial and extracellular enzymatic responses to warming[J]. Soil Biology and Biochemistry, 2018, 120:212-221.
    [103] LIU WX, ALLISON SD, XIA JY, LIU LL, WAN SQ. Precipitation regime drives warming responses of microbial biomass and activity in temperate steppe soils[J]. Biology and Fertility of Soils, 2016, 52(4):469-477.
    [104] HU YL, WANG S, NIU B, CHEN QY, WANG J, ZHAO JX, LUO TX, ZHANG GX. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe[J]. Environmental Research, 2020, 189:109917.
    [105] 李东, 肖娴, 孙波, 梁玉婷. 水热增加下黑土细菌群落共生网络特征[J]. 微生物学报, 2021, 61(6):1715-1727.LI D, XIAO X, SUN B, LIANG YT. Co-occurrence network of bacterial communities in mollisol soils under increasing hydrothermal conditions[J]. Acta Microbiologica Sinica, 2021, 61(6):1715-1727 (in Chinese).
    [106] 林婉奇, 薛立. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响[J]. 生态学报, 2020, 40(12):4188-4197.LIN WQ, XUE L. Analysis of effects of nitrogen deposition and precipitation on soil microbial function diversity based on BIOLOG technique[J]. Acta Ecologica Sinica, 2020, 40(12):4188-4197 (in Chinese).
    [107] 吴文超, 岳平, 崔晓庆, 李凯辉, 刘学军. 古尔班通古特沙漠土壤微生物碳氮对环境因子的响应[J]. 干旱区研究, 2018, 35(3):515-523.WU WC, YUE P, CUI XQ, LI KH, LIU XJ. Response of soil microbial biomass carbon and nitrogen deposition to precipitation and temperature in the Gurbantunggut Desert[J]. Arid Zone Research, 2018, 35(3):515-523 (in Chinese).
    [108] HUANG G, LI Y, SU YG. Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China[J]. Soil Biology and Biochemistry, 2015, 83:52-56.
    [109] YAN GY, XING YJ, LÜ XT, XU LJ, ZHANG JH, DAI GH, LUO W, LIU GC, DONG XD, WANG QG. Effects of artificial nitrogen addition and reduction in precipitation on soil CO2 and CH4 effluxes and composition of the microbial biomass in a temperate forest[J]. European Journal of Soil Science, 2019, 70(6):1197-1211.
    [110] XI NX, BLOOR JMG. Interactive effects of precipitation and nitrogen spatial pattern on carbon use and functional diversity in soil microbial communities[J]. Applied Soil Ecology, 2016, 100:207-210.
    [111] CHEN XP, WANG GX, ZHANG T, MAO TX, WEI D, SONG CL, HU ZY, HUANG KW. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. The Science of the Total Environment, 2017, 601/602:1389-1399.
    [112] FANG C, LI FM, PEI JY, REN J, GONG YH, YUAN ZQ, KE WB, ZHENG Y, BAI XK, YE JS. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment[J]. Agricultural and Forest Meteorology, 2018, 248:449-457.
    [113] LIU XF, YANG ZJ, LIN CF, GIARDINA CP, XIONG DC, LIN WS, CHEN SD, XU C, CHEN GS, XIE JS, LI YQ, YANG YS. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?[J]. Agricultural and Forest Meteorology, 2017, 246:78-85.
    [114] SUN SQ, WU YH, ZHANG J, WANG GX, DELUCA TH, ZHU WZ, LI AD, DUAN M, HE L. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353:283-292.
    [115] REICH PB, HOBBIE SE, LEE TD, RICH R, PASTORE MA, WORM K. Synergistic effects of four climate change drivers on terrestrial carbon cycling[J]. Nature Geoscience, 2020, 13(12):787-793.
    [116] THAKUR MP, del REAL IM, CESARZ S, STEINAUER K, REICH PB, HOBBIE S, CIOBANU M, RICH R, WORM K, EISENHAUER N. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation[J]. Soil Biology and Biochemistry, 2019, 135:184-193.
    [117] 沈芳芳, 刘影, 罗昌泰, 刘文飞, 段洪浪, 廖迎春, 吴春生, 樊后保. 陆地生态系统植物和土壤微生物群落多样性对全球变化的响应与适应研究进展[J]. 生态环境学报, 2019, 28(10):2129-2140.SHEN FF, LIU Y, LUO CT, LIU WF, DUAN HL, LIAO YC, WU CS, FAN HB. Research progress on response and adaptation of plant and soil microbial community diversity to global change in terrestrial ecosystem[J]. Ecology and Environmental Sciences, 2019, 28(10):2129-2140 (in Chinese).
    [118] ZHU Y, YU KL, WU Q, CHENG X, LI ZG, WANG ZW, ZHAO ML, WILKES A, BISSELLING T, HAN GD, REN HY. Seasonal precipitation and soil microbial community influence plant growth response to warming and N addition in a desert steppe[J]. Plant and Soil, 2023, 482(1):245-259.
    [119] ZHENG JQ, CUI MM, WANG C, WANG J, WANG SL, SUN ZJ, REN FR, WAN SQ, HAN SJ. Elevated CO2, warming, N addition, and increased precipitation affect different aspects of the arbuscular mycorrhizal fungal community[J]. Science of the Total Environment, 2022, 806:150522.
    [120] KARDOL P, CREGGER MA, CAMPANY CE, CLASSEN AT. Soil ecosystem functioning under climate change:plant species and community effects[J]. Ecology, 2010, 91(3):767-781.
    [121] CAREY JC, TANG JW, TEMPLER PH, KROEGER KD, CROWTHER TW, BURTON AJ, DUKES JS, EMMETT B, FREY SD, HESKEL MA, JIANG LF, MACHMULLER MB, MOHAN J, PANETTA AM, REICH PB, REINSCH S, WANG X, ALLISON SD, BAMMINGER C, BRIDGHAM S, et al. Temperature response of soil respiration largely unaltered with experimental warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48):13797-13802.
    [122] THAKUR MP, REICH PB, HOBBIE SE, STEFANSKI A, RICH R, RICE KE, EDDY WC, EISENHAUER N. Reduced feeding activity of soil detritivores under warmer and drier conditions[J]. Nature Climate Change, 2018, 8(1):75-78.
    [123] MELILLO JM, BUTLER S, JOHNSON J, MOHAN J, STEUDLER P, LUX H, BURROWS E, BOWLES F, SMITH R, SCOTT L, VARIO C, HILL T, BURTON A, ZHOU YM, TANG J. Soil warming, carbon-nitrogen interactions, and forest carbon budgets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23):9508-9512.
    [124] REICH PB, HOBBIE SE, LEE TD. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nature Geoscience, 2014, 7(12):920-924.
    [125] PHILIPPOT L, GRIFFITHS BS, LANGENHEDER S. Microbial community resilience across ecosystems and multiple disturbances[J]. Microbiology and Molecular Biology Reviews:MMBR, 2021, 85(2):e00026-e00020.
    [126] YUE K, YANG WQ, PENG Y, PENG CH, TAN B, XU ZF, ZHANG L, NI XY, ZHOU W, WU FZ. Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools:a meta-analysis[J]. The Science of the Total Environment, 2018, 630:181-188.
    [127] REICH PB, SENDALL KM, STEFANSKI A, RICH RL, HOBBIE SE, MONTGOMERY RA. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 2018, 562(7726):263-267.
    [128] 宿晓琳, 李英滨, 杨波, 李琪. 植物多样性对亚热带森林土壤微生物群落的影响[J]. 生态学杂志, 2018, 37(8):2254-2261.SU XL, LI YB, YANG B, LI Q. Effects of plant diversity on soil microbial community in a subtropical forest[J]. Chinese Journal of Ecology, 2018, 37(8):2254-2261 (in Chinese).
    [129] LI H, XU ZW, YANG S, LI XB, TOP EM, WANG RZ, ZHANG YG, CAI JP, YAO F, HAN XG, JIANG Y. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation[J]. Microbial Ecology, 2016, 71(4):974-989.
    引证文献
引用本文

李怡佳,马俊伟,李玉倩,沈心怡,夏星辉. 土壤微生物群落对全球气候变化响应的研究进展[J]. 微生物学通报, 2023, 50(4): 1700-1719

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-05
  • 录用日期:2023-03-04
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码