科微学术

微生物学通报

多孔介质中的微生物迁移行为与影响因素研究进展
作者:
基金项目:

国家自然科学基金(22106002);安徽省自然科学基金(2108085QE244)


Removal of microorganisms and influencing factors in porous media
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微生物在地下水和土壤环境中的迁移与地下水资源保护、地下水污染修复及土壤污染防治等息息相关。自然界中多孔介质具有结构复杂性和空间异质性。这导致微生物在其中的迁移易受多重环境因素的影响。本文总结了几种典型多孔介质中微生物迁移模型、理论与研究方法,并对多孔介质中影响微生物迁移行为的3种因素——物理、化学和生物因素进行了梳理。其中物理因素的影响主要包括多孔介质的粒径、表面粗糙度、饱和度、环境温度、水体流速等相关;化学因素主要包含流体pH、离子种类与强度、可溶性有机物含量、多孔介质自身化学性质等;生物因素不但涉及微生物种类、细胞大小和细胞表面特性,还与胞外聚合物的分泌、鞭毛运动及趋化性等相关。本综述旨在总结近年来有关微生物在多孔介质中迁移的相关研究,深入理解微生物在多孔介质中的迁移行为,为其在地下水和土壤污染修复中的实际应用提供理论依据。

    Abstract:

    Removal of microorganisms in soil and groundwater environments is closely related to groundwater resource protection, groundwater pollution treatment, and soil pollution prevention. Due to complex structures and spatial heterogeneity of porous media in nature, the removal of microorganisms is susceptible to multiple environmental factors. This paper summarized several models, theories, and research methods of typical removal of microorganisms in porous media, and sorted out three factors (physical, chemical, and biological factors) affecting the removal of microorganisms in porous media. The physical factors included the particle size, surface roughness, saturation, ambient temperature, and flow rate in porous media. The chemical factors include pH, ionic species and strength, soluble organic matter content, and chemical properties of porous media. The biological factors involve not only the microbial species, cell size, and cell surface properties, but also the secretion of extracellular polymers, flagellar mediated motility, and chemotaxis. The purpose of this paper is to improve the understanding of the removal of microorganisms in porous media by reviewing the related research in recent years, to provide a theoretical basis for its practical application in the remediation of polluted groundwater and soil.

    参考文献
    [1] THOMANN JA, WERNER AD, IRVINE DJ, CURRELL MJ. Adaptive management in groundwater planning and development:a review of theory and applications[J]. Journal of Hydrology, 2020, 586:124871.
    [2] ZHAO WG, ZHAO P, TIAN YM, SHEN CY, LI ZP, JIN C. Transport and retention of M icrocystis aeruginosa in porous media:impacts of ionic strength, flow rate, media size and pre-oxidization[J]. Water Research, 2019, 162:277-287.
    [3] SULIMAN W, HARSH JB, FORTUNA AM, GARCIA-PÉREZ M, ABU-LAIL NI. Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns[J]. Environmental Science & Technology, 2017, 51(9):5071-5081.
    [4] BAO Q, DONG J, DONG Z, YANG M. A review on ionizing radiation-based technologies for the remediation of contaminated groundwaters and soils[J]. Chemical Engineering Journal, 2022, 446:136964.
    [5] AZUBUIKE CC, CHIKERE CB, OKPOKWASILI GC. Bioremediation techniques-classification based on site of application:principles, advantages, limitations and prospects[J]. World Journal of Microbiology and Biotechnology, 2016, 32(11):180.
    [6] DIXIT R, WASIULLAH, MALAVIYA D, PANDIYAN K, SINGH U, SAHU AS, SHUKLA R, SINGH B, RAI J, SHARMA P, LADE H, PAUL D. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7(2):2189-2212.
    [7] CYCOŃ M, MROZIK A, PIOTROWSKA-SEGET Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil:a review[J]. Chemosphere, 2017, 172:52-71.
    [8] SYNGOUNA VI, CHRYSIKOPOULOS CV, KOKKINOS P, TSELEPI MA, VANTARAKIS A. Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media:effect of flow velocity[J]. Science of The Total Environment, 2017, 598:160-167.
    [9] TONG MP, LI TF, LI M, HE L, MA ZY. Cotransport and deposition of biochar with different sized-plastic particles in saturated porous media[J]. Science of The Total Environment, 2020, 713:136387.
    [10] 肖波, 赵允格. 病毒在土壤和地下水中迁移研究综述[J]. 土壤通报, 2006, 37(1):177-183.XIAO B, ZHAO YG. Review of virus transport in soil and groundwater[J]. Chinese Journal of Soil Science, 2006, 37(1):177-183 (in Chinese).
    [11] BABAKHANI P, BRIDGE J, DOONG RA, PHENRAT T. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media:a state-of-the-science review[J]. Advances in Colloid and Interface Science, 2017, 246:75-104.
    [12] 李晗熠. 水铁矿胶粒在饱和多孔介质中的运移行为研究[D]. 大连:大连理工大学硕士学位论文, 2021.LI HY. Transport behavior of ferrihydrite colloids in saturated porous media[D]. Dalian:Master's Thesis of Dalian University of Technology, 2021 (in Chinese).
    [13] NASCIMENTO AG, TÓTOLA MR, SOUZA CS, BORGES MT, BORGES AC. Temporal and spatial dynamics of blocking and ripening effects on bacterial transport through a porous system:a possible explanation for CFT deviation[J]. Colloids and Surfaces B:Biointerfaces, 2006, 53(2):241-244.
    [14] 张文静, 周晶晶, 刘丹, 李昊洋, 于喜鹏, 桓颖. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4):629-638.ZHANG WJ, ZHOU JJ, LIU D, LI HY, YU XP, HUAN Y. A review:research methods that describe the environmental behavior of colloids in groundwater[J]. Advances in Water Science, 2016, 27(4):629-638 (in Chinese).
    [15] KÄMÄRÄINEN T, TARDY BL, NIKKHAH SJ, BATYS P, SAMMALKORPI M, ROJAS OJ. Effect of particle surface corrugation on colloidal interactions[J]. Journal of Colloid and Interface Science, 2020, 579:794-804.
    [16] 李宵慧. 典型功能微生物FA1在饱和多孔介质中的运移行为及其影响机制研究[D]. 南京:南京大学博士学位论文, 2019.LI XH. Transport and mechanisms of typical functional microorganism FA1 in saturated porus media[D]. Nanjing:Doctoral Dissertation of Nanjing University, 2019 (in Chinese).
    [17] ZHONG H, LIU GS, JIANG YB, YANG JZ, LIU Y, YANG X, LIU ZF, ZENG GM. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation:a review[J]. Biotechnology Advances, 2017, 35(4):490-504.
    [18] HORI K, MATSUMOTO S. Bacterial adhesion:from mechanism to control[J]. Biochemical Engineering Journal, 2010, 48(3):424-434
    [19] BAI HJ, COCHET N, PAUSS A, LAMY E. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces:their relative impact on bacteria deposition mechanisms in unsaturated porous media[J]. Colloids and Surfaces B:Biointerfaces, 2017, 150:41-49.
    [20] RAWAT S, PULLAGURALA VLR, ADISA IO, WANG Y, PERALTA-VIDEA JR, GARDEA-TORRESDEY JL. Factors affecting fate and transport of engineered nanomaterials in terrestrial environments[J]. Current Opinion in Environmental Science & Health, 2018, 6:47-53.
    [21] HE L, RONG HF, WU D, LI M, WANG CY, TONG MP. Influence of biofilm on the transport and deposition behaviors of nano-and micro-plastic particles in quartz sand[J]. Water Research, 2020, 178:115808.
    [22] DONG SN, ZHOU MZ, SU XT, XIA JH, WANG L, WU HY, SUAKOLLIE E B, WANG DJ. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media:a real-time pore-scale visualization[J]. Water Research, 2022, 214:118195.
    [23] HE L, WU D, TONG MP. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media[J]. Water Research, 2019, 161:364-371.
    [24] BAI HJ, COCHET N, DRELICH A, PAUSS A, LAMY E. Comparison of transport between two bacteria in saturated porous media with distinct pore size distribution[J]. RSC Advances, 2016, 6(18):14602-14614.
    [25] LU DW, FATEHI P. A modeling approach for quantitative assessment of interfacial interaction between two rough particles in colloidal systems[J]. Journal of Colloid and Interface Science, 2021, 587:24-38.
    [26] HOEK EM, AGARWAL GK. Extended DLVO interactions between spherical particles and rough surfaces[J]. Journal of Colloid and Interface Science, 2006, 298(1):50-58.
    [27] HUYSMAN F, VERSTRAETE W. Water-facilitated transport of bacteria in unsaturated soil columns:influence of inoculation and irrigation methods[J]. Soil Biology and Biochemistry, 1993, 25(1):91-97.
    [28] JEWETT DG, LOGAN BE, ARNOLD RG, BALES RC. Transport of Pseudomonas fluorescens strain P17 through quartz sand columns as a function of water content[J]. Journal of Contaminant Hydrology, 1999, 36(1/2):73-89.
    [29] PANG LP, FARKAS K, LIN SS, HEWITT J, PREMARATNE A, CLOSE M. Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media-laboratory studies[J]. Water Research, 2021, 196:117051.
    [30] WANG M, GAO B, TANG DS, SUN HM, YIN XQ, YU CR. Effects of temperature on graphene oxide deposition and transport in saturated porous media[J]. Journal of Hazardous Materials, 2017, 331:28-35.
    [31] MCCAULOU DR, BALES RC, ARNOLD RG. Effect of temperature-controlled motility on transport of bacteria and microspheres through saturated sediment[J]. Water Resources Research, 1995, 31(2):271-280.
    [32] KIM HN, WALKER SL. Escherichia coli transport in porous media:influence of cell strain, solution chemistry, and temperature[J]. Colloids and Surfaces B:Biointerfaces, 2009, 71(1):160-167.
    [33] 张文静, 秦运琦, 刘丹, 马添翼, 厉晓飞. 微生物在多孔介质中环境行为研究[J]. 中国环境科学, 2018, 38(10):3975-3984.ZHANG WJ, QIN YQ, LIU D, MA TY, LI XF. Transport behavior of microorganism in the porous media[J]. China Environmental Science, 2018, 38(10):3975-3984 (in Chinese).
    [34] HE L, RONG HF, LI M, ZHANG MY, LIU SR, YANG M, TONG MP. Bacteria have different effects on the transport behaviors of positively and negatively charged microplastics in porous media[J]. Journal of Hazardous Materials, 2021, 415:125550.
    [35] CHEN G. Bacterial interactions and transport in unsaturated porous media[J]. Colloids and Surfaces B:Biointerfaces, 2008, 67(2):265-271.
    [36] MITROPOULOU PN, SYNGOUNA VI, CHRYSIKOPOULOS CV. Transport of colloids in unsaturated packed columns:role of ionic strength and sand grain size[J]. Chemical Engineering Journal, 2013, 232:237-248.
    [37] LI XH, XU HX, GAO B, SUN YY, SHI XQ, WU JC. Retention and transport of PAH-degrading bacterium Herbaspirillum chlorophenolicum FA1 in saturated porous media under various physicochemical conditions[J]. Water, Air, & Soil Pollution, 2017, 228(7):259.
    [38] JIANG D, HUANG Q, CAI P, RONG X, CHEN W. Adsorption of Pseudomonas putida on clay minerals and iron oxide[J]. Colloids and Surfaces B:Biointerfaces, 2007, 54(2):217-221.
    [39] LI XH, XU HX, GAO B, YANG ZD, SUN YY, SHI XQ, WU JC. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media:effect of ion type and concentration[J]. Environmental Pollution, 2019, 254:112940.
    [40] ZHANG MY, HE L, JIN X, BAI F, TONG MP, NI JR. Flagella and their properties affect the transport and deposition behaviors of Escherichia coli in quartz sand[J]. Environmental Science & Technology, 2021, 55(8):4964-4973.
    [41] WU D, HE L, SUN RN, TONG MP, KIM H. Influence of Bisphenol A on the transport and deposition behaviors of bacteria in quartz sand[J]. Water Research, 2017, 121:1-10.
    [42] HE L, WU D, RONG HF, LI M, TONG MP, KIM H. Influence of nano-and microplastic particles on the transport and deposition behaviors of bacteria in quartz sand[J]. Environmental Science & Technology, 2018, 52(20):11555-11563.
    [43] FAN W, JIANG X H, YANG W, GENG Z, HUO MX, LIU ZM, ZHOU H. Transport of graphene oxide in saturated porous media:effect of cation composition in mixed Na-Ca electrolyte systems[J]. Science of the Total Environment, 2015, 511:509-515.
    [44] HE L, LI M, WU D, GUO J, ZHANG MY, TONG MP. Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations[J]. Water Research, 2022, 221:118683.
    [45] DONG Z, YANG HY, WU D, NI JR, KIM H, TONG MP. Influence of silicate on the transport of bacteria in quartz sand and iron mineral-coated sand[J]. Colloids and Surfaces B:Biointerfaces, 2014, 123:995-1002.
    [46] YANG HY, GE Z, WU D, TONG MP, NI JR. Cotransport of bacteria with hematite in porous media:effects of ion valence and humic acid[J]. Water Research, 2016, 88:586-594.
    [47] ABUDALO RA, RYAN JN, HARVEY RW, METGE DW, LANDKAMER L. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium[J]. Water Research, 2010, 44(4):1104-1113.
    [48] KIM J, ROCHE K R, BOLSTER D, DOUDRICK K. The impact of biofilms and dissolved organic matter on the transport of nanoparticles in field-scale streams[J]. Water Research, 2022, 226:119206.
    [49] BALSEIRO-ROMERO M, PRIETO-FERNÁNDEZ Á, SHOR LM, GHOSHAL S, BAVEYE PC, ORTEGA-CALVO JJ. Chemotactic bacteria facilitate the dispersion of nonmotile bacteria through micrometer-sized pores in engineered porous media[J]. Environmental Science & Technology, 2022, 56(19):13975-13984.
    [50] JIMENEZ-SANCHEZ C, WICK LY, ORTEGA-CALVO JJ. Impact of chemoeffectors on bacterial motility, transport, and contaminant degradation in sand-filled percolation columns[J]. Environmental Science & Technology, 2018, 52(18):10673-10679.
    [51] WU D, HE L, GE Z, TONG MP, KIM H. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media[J]. Water Research, 2018, 143:425-435.
    [52] 韩志捷, 李洁, 王伟荔, 华亚. 微生物在多孔介质中的迁移机制及影响因素[J]. 安徽农业科学, 2016, 44(2):127-130, 167.HAN ZJ, LI J, WANG WL, HUA Y. Study on transport mechanisms and influencing factors of microorganisms in porous media[J]. Journal of Anhui Agricultural Sciences, 2016, 44(2):127-130, 167 (in Chinese).
    [53] MALLÉN G, MALOSZEWSKI P, FLYNN R, ROSSI P, ENGEL M, SEILER KP. Determination of bacterial and viral transport parameters in a gravel aquifer assuming linear kinetic sorption and desorption[J]. Journal of Hydrology, 2005, 306(1/2/3/4):21-36.
    [54] BAI HJ, COCHET N, PAUSS A, LAMY E. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media[J]. Colloids and Surfaces B:Biointerfaces, 2016, 139:148-155.
    [55] ZHAO P, GENG T, GUO YP, MENG YJ, ZHANG HW, ZHAO WG. Transport of E. coli colloids and surrogate microspheres in the filtration process:effects of flow rate, media size, and media species[J]. Colloids and Surfaces B:Biointerfaces, 2022, 220:112883.
    [56] GAO MQ, PENG HJ, XIAO L. The influence of microplastics for the transportation of E. coli using column model[J]. Science of The Total Environment, 2021, 786:147487.
    [57] SHARMA MM, CHANG YI, YEN TF. Reversible and irreversible surface charge modification of bacteria for facilitating transport through porous media[J]. Colloids and Surfaces, 1985, 16(2):193-206.
    [58] CHEN GX, WALKER SL. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media[J]. Environmental Science & Technology, 2012, 46(16):8782-8790.
    [59] SIDDHARTH T, SRIDHAR P, VINILA V, TYAGI RD. Environmental applications of microbial extracellular polymeric substance (EPS):a review[J]. Journal of Environmental Management, 2021, 287:112307.
    [60] GOPALAKRISHNAN K, KASHIAN DR. Extracellular polymeric substances in green alga facilitate microplastic deposition[J]. Chemosphere, 2022, 286:131814.
    [61] TONG MP, LONG GY, JIANG XJ, KIM HN. Contribution of extracellular polymeric substances on representative Gram negative and Gram positive bacterial deposition in porous media[J]. Environmental Science & Technology, 2010, 44(7):2393-2399.
    [62] JIN C, ZHAO LG, ZHAO WG, WANG LT, ZHU SS, XIAO ZH, MO YJ, ZHANG MY, SHU LF, QIU RL. Transport and retention of free-living Amoeba spores in porous media:effects of operational parameters and extracellular polymeric substances[J]. Environmental Science & Technology, 2021, 55(13):8709-8720.
    [63] HAZNEDAROGLU BZ, ZORLU O, HILL JE, WALKER SL. Identifying the role of flagella in the transport of motile and nonmotile Salmonella enterica serovars[J]. Environmental Science & Technology, 2010, 44(11):4184-4190.
    [64] CHENG L, MIN D, LIU DF, LI WW, YU HQ. Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32[J]. Environmental Science & Technology, 2019, 53(24):14604-14611.
    [65] LI Y, LIU K, MAO RR, LIU B, CHENG L, SHI XY. Unveiling the chemotactic response and mechanism of Shewanella oneidensis MR-1 to nitrobenzene[J]. Journal of Hazardous Materials, 2022, 431:128629
    [66] LIU LC, LIU GF, ZHOU JT, JIN RF. Energy taxis toward redox-active surfaces decreases the transport of electroactive bacteria in saturated porous media[J]. Environmental Science & Technology, 2021, 55(8):5559-5568
    [67] JIN C, MO YJ, ZHAO LG, XIAO ZH, ZHU SS, HE ZZ, CHEN ZJ, ZHANG MY, SHU LF, QIU RL. Host-endosymbiont relationship impacts the retention of bacteria-containing Amoeba spores in porous media[J]. Environmental Science & Technology, 2022, 56(17):12347-12357
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石玉,周慧娴,曹凤婷,彭洁茹,黄靖,邱晓营,程磊. 多孔介质中的微生物迁移行为与影响因素研究进展[J]. 微生物学通报, 2023, 50(4): 1639-1652

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-08
  • 录用日期:2022-11-21
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码