科微学术

微生物学通报

饮用水系统硝化微生物分布规律、环境影响因素及调控应用的研究进展
作者:
基金项目:

国家自然科学基金(51878468);中央高校基本科研业务费专项资金项目(2022-4-YB-17);上海市政工程设计研究总院(集团)有限公司科研专项(K2020K052A)


Distribution characteristics, environmental influencing factors and engineering application of nitrifiers in drinking water systems: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    硝化微生物广泛存在于饮用水系统中。水处理过程中,硝化微生物对含氮污染物的去除有突出贡献;而输配水过程中,硝化微生物会加剧消毒剂氯胺的降解,造成一系列饮用水微生物安全问题。本文介绍了常用硝化微生物检测方法,综述了硝化微生物在滤池、市政主管网、二次供水系统中的分布特征和规律,分析了环境因子及工程条件对硝化微生物的影响机制,探讨了硝化微生物强化应用及管控的实际工程措施,展望了未来饮用水系统中硝化微生物的研究重点与应用前景。

    Abstract:

    Nitrifiers are omnipresent in drinking water systems. While being capable of degrading nitrogenous contaminants in drinking water treatment process, nitrifiers accelerate the consumption of disinfectant in drinking water distribution systems, thus posing a serious threat to public health. This paper introduces the methodological techniques currently used in the detection of nitrifiers and summarizes the distribution characteristics of nitrifiers in filters, drinking water distribution systems, and secondary water supply systems. Further, it elucidates the influencing mechanism of environmental and engineering factors on nitrifiers, discusses the augmentation and suppression of nitrification in drinking water system and prospects the future research and application of nitrifiers.

    参考文献
    [1] GRUBER N, GALLOWAY JN. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296.
    [2] NUNES-ALVES C. Microbial ecology:do it yourself nitrification[J]. Nature Reviews Microbiology, 2016, 14(2):61.
    [3] KÖNNEKE M, BERNHARD AE, de la TORRE JR, WALKER CB, WATERBURY JB, STAHL DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546.
    [4] 徐建宇, 毛艳萍. 从典型硝化细菌到全程氨氧化微生物:发现及研究进展[J]. 微生物学通报, 2019, 46(4):879-890.XU JY, MAO YP. From canonical nitrite oxidizing bacteria to complete ammonia oxidizer:discovery and advances[J]. Microbiology China, 2019, 46(4):879-890 (in Chinese).
    [5] ZHU GB, WANG XM, WANG SY, YU LB, ARMANBEK G, YU J, JIANG LP, YUAN DD, GUO ZR, ZHANG HR, ZHENG L, SCHWARK L, JETTEN MIKE SM, YADAV AK, ZHU YG. Towards a more labor-saving way in microbial ammonium oxidation:a review on complete ammonia oxidization (comammox)[J]. Science of the Total Environment, 2022, 829:154590.
    [6] LAWSON CE, LÜCKER S. Complete ammonia oxidation:an important control on nitrification in engineered ecosystems?[J]. Current Opinion in Biotechnology, 2018, 50:158-165.
    [7] COSTA E, PÉREZ J, KREFT JU. Why is metabolic labour divided in nitrification?[J]. Trends in Microbiology, 2006, 14(5):213-219.
    [8] VIKESLAND PJ, OZEKIN K, VALENTINE RL. Effect of natural organic matter on monochloramine decomposition:pathway elucidation through the use of mass and redox balances[J]. Environmental Science & Technology, 1998, 32(10):1409-1416.
    [9] CUNLIFFE DA. Bacterial nitrification in chloraminated water supplies[J]. Applied and Environmental Microbiology, 1991, 57(11):3399-3402.
    [10] ZHANG Y, LOVE N, EDWARDS M. Nitrification in drinking water systems[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(3):153-208.
    [11] MAESTRE JP, WAHMAN DG, SPEITEL Jr GE. Monochloramine cometabolism by mixed-culture nitrifiers under drinking water conditions[J]. Environmental Science & Technology, 2016, 50(12):6240-6248.
    [12] MAESTRE JP, WAHMAN DG, SPEITEL Jr GE. Monochloramine cometabolism by Nitrosomonas europaea under drinking water conditions[J]. Water Research, 2013, 47(13):4701-4709.
    [13] LIPPONEN MTT, SUUTARI MH, MARTIKAINEN PJ. Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems[J]. Water Research, 2002, 36(17):4319-4329.
    [14] LIPPONEN MTT, MARTIKAINEN PJ, VASARA RE, SERVOMAA K, ZACHEUS O, KONTRO MH. Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms[J]. Water Research, 2004, 38(20):4424-4434.
    [15] CRUZ MC, WOO Y, FLEMMING HC, WUERTZ S. Nitrifying niche differentiation in biofilms from full-scale chloraminated drinking water distribution system[J]. Water Research, 2020, 176:115738.
    [16] DAIMS H, LEBEDEVA EV, PJEVAC P, HAN P, HERBOLD C, ALBERTSEN M, JEHMLICH N, PALATINSZKY M, VIERHEILIG J, BULAEV A, KIRKEGAARD RH, von BERGEN M, RATTEI T, BENDINGER B, NIELSEN PH, WAGNER M. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
    [17] HUANG WE, WARD AD, WHITELEY AS. Raman tweezers sorting of single microbial cells[J]. Environmental Microbiology Reports, 2009, 1(1):44-49.
    [18] WANG Y, HUANG WE, CUI L, WAGNER M. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41:34-42.
    [19] van der WIELEN PWJJ, VOOST S, van der KOOIJ D. Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems[J]. Applied and Environmental Microbiology, 2009, 75(14):4687-4695.
    [20] ROY D, MCEVOY J, KHAN E. Abundance and activity of ammonia oxidizing archaea and bacteria in bulk water and biofilm in water supply systems practicing chlorination and chloramination:Full and laboratory scale investigations[J]. Science of the Total Environment, 2020, 715:137043.
    [21] SANTILLANA GE, SMITH HJ, BURR M, CAMPER AK. Archaeal ammonium oxidation coupled with bacterial nitrite oxidation in a simulated drinking water premise plumbing system[J]. Environmental Science:Water Research & Technology, 2016, 2(4):658-669.
    [22] RUI M, CHEN HS, YE YY, DENG HP, WANG H. Effect of flow configuration on nitrifiers in biological activated carbon filters for potable water production[J]. Environmental Science & Technology, 2020, 54(22):14646-14655.
    [23] AGGARWAL S, GOMEZ-SMITH CK, JEON Y, LAPARA TM, WAAK MB, HOZALSKI RM. Effects of chloramine and coupon material on biofilm abundance and community composition in bench-scale simulated water distribution systems and comparison with full-scale water mains[J]. Environmental Science & Technology, 2018, 52(22):13077-13088.
    [24] PESTER M, RATTEI T, FLECHL S, GRÖNGRÖFT A, RICHTER A, OVERMANN J, REINHOLD-HUREK B, LOY A, WAGNER M. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2):525-539.
    [25] PURKHOLD U, POMMERENING-RÖSER A, JURETSCHKO S, SCHMID M C, KOOPS HP, WAGNER M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66(12):5368-5382.
    [26] PESTER M, MAIXNER F, BERRY D, RATTEI T, KOCH H, LÜCKER S, NOWKA B, RICHTER A, SPIECK E, LEBEDEVA E, LOY A, WAGNER M, DAIMS H. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira[J]. Environmental Microbiology, 2014, 16(10):3055-3071.
    [27] PJEVAC P, SCHAUBERGER C, POGHOSYAN L, HERBOLD CW, van KESSEL MAHJ, DAEBELER A, STEINBERGER M, JETTEN MSM, LÜCKER S, WAGNER M, DAIMS H. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8:1508.
    [28] DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9):699-712.
    [29] JIANG R, WANG JG, ZHU T, ZOU B, WANG DQ, RHEE SK, AN D, JI ZY, QUAN ZX. Use of newly designed primers for quantification of complete ammonia-oxidizing (comammox) bacterial clades and strict nitrite oxidizers in the genus Nitrospira[J]. Applied and Environmental Microbiology, 2020, 86(20):1-17.
    [30] FRANCIS CA, ROBERTS KJ, BEMAN JM, SANTORO AE, OAKLEY BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41):14683-14688.
    [31] ROTTHAUWE JH, WITZEL KP, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12):4704-4712.
    [32] FOWLER SJ, PALOMO A, DECHESNE A, MINES PD, SMETS BF. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities[J]. Environmental Microbiology, 2018, 20(3):1002-1015.
    [33] HOVANEC TA, TAYLOR LT, BLAKIS A, DELONG EF. Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria[J]. Applied and Environmental Microbiology, 1998, 64(1):258-264.
    [34] GRAHAM DW, KNAPP CW, van VLECK ES, BLOOR K, LANE TB, GRAHAM CE. Experimental demonstration of chaotic instability in biological nitrification[J]. The ISME Journal, 2007, 1(5):385-393.
    [35] BARTELME RP, MCLELLAN SL, NEWTON RJ. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira[J]. Frontiers in Microbiology, 2017, 8:101.
    [36] XIA F, WANG JG, ZHU T, ZOU B, RHEE SK, QUAN ZX. Ubiquity and diversity of complete ammonia oxidizers (comammox)[J]. Applied and Environmental Microbiology, 2018, 84(24):e01390-e01318.
    [37] ZHAO ZR, HUANG GH, HE SS, ZHOU N, WANG MY, DANG CY, WANG JW, ZHENG MS. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set[J]. Science of the Total Environment, 2019, 691:146-155.
    [38] SATO Y, TANAKA E, HORI T, FUTAMATA H, MUROFUSHI K, TAKAGI H, AKACHI T, MIWA T, INABA T, AOYAGI T, HABE H. Efficient conversion of organic nitrogenous wastewater to nitrate solution driven by comammox Nitrospira[J]. Water Research, 2021, 197:117088.
    [39] PINTO AJ, MARCUS DN, IJAZ UZ, BAUTISTA-de LOSE SANTOS QM, DICK GJ, RASKIN L. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system[J]. mSphere, 2015, 1(1):e00054-e00015.
    [40] WANG YL, MA LP, MAO YP, JIANG XT, XIA Y, YU K, LI B, ZHANG T. Comammox in drinking water systems[J]. Water Research, 2017, 116:332-341.
    [41] WAGNER FB, DIWAN V, DECHESNE A, FOWLER SJ, SMETS BF, ALBRECHTSEN HJ. Copper-induced stimulation of nitrification in biological rapid sand filters for drinking water production by proliferation of Nitrosomonas spp.[J]. Environmental Science & Technology, 2019, 53(21):12433-12441.
    [42] HU WC, LIANG JS, JU F, WANG QJ, LIU RP, BAI YH, LIU HJ, QU JH. Metagenomics unravels differential microbiome composition and metabolic potential in rapid sand filters purifying surface water versus groundwater[J]. Environmental Science & Technology, 2020, 54(8):5197-5206.
    [43] POTGIETER SC, DAI ZH, VENTER SN, SIGUDU M, PINTO AJ. Microbial nitrogen metabolism in chloraminated drinking water reservoirs[J]. mSphere, 2020, 5(2):e00274-e00220.
    [44] GANESH S, BRISTOW LA, LARSEN M, SARODE N, THAMDRUP B, STEWART FJ. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone[J]. The ISME Journal, 2015, 9(12):2682-2696.
    [45] WANG L, WANG J, CHEN Q, YANG J, DENG LW, HUANG Z. A simple and sensitive direct mRNA multiplexed detection strategy for amoA-targeted monitoring of ammonia-oxidizing activity in water environment[J]. Microchemical Journal, 2021, 162:105794.
    [46] XU JJ, TANG W, MA J, WANG H. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes[J]. Applied Microbiology and Biotechnology, 2017, 101(13):5531-5541.
    [47] LI Q, YU SL, LI L, LIU GC, GU ZY, LIU MM, LIU ZY, YE YB, XIA Q, REN LM. Microbial communities shaped by treatment processes in a drinking water treatment plant and their contribution and threat to drinking water safety[J]. Frontiers in Microbiology, 2017, 8:2465.
    [48] PALOMO A, JANE FOWLER S, GÜLAY A, RASMUSSEN S, SICHERITZ-PONTEN T, SMETS BF. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.[J]. The ISME Journal, 2016, 10(11):2569-2581.
    [49] HU JJ, ZHAO YX, YANG WL, WANG JQ, LIU H, ZHENG P, HU BL. Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters[J]. FEMS Microbiology Ecology, 2020, 96(10):fiaa179.
    [50] HOSSAIN S, CHOW CWK, COOK D, SAWADE E, HEWA GA. Review of nitrification monitoring and control strategies in drinking water system[J]. International Journal of Environmental Research and Public Health, 2022, 19(7):4003.
    [51] 马凯, 胡建坤, 韩宏大. 氯胺消毒供水系统问题分析与应对策略[J]. 供水技术, 2019, 13(4):28-34.MA K, HU JK, HAN HD. Issues causes and coping strategy in chloraminated water distribution systems[J]. Water Technology, 2019, 13(4):28-34 (in Chinese).
    [52] KASUGA I, NAKAGAKI H, KURISU F, FURUMAI H. Predominance of ammonia-oxidizing archaea on granular activated carbon used in a full-scale advanced drinking water treatment plant[J]. Water Research, 2010, 44(17):5039-5049.
    [53] TATARI K, MUSOVIC S, GÜLAY A, DECHESNE A, ALBRECHTSEN HJ, SMETS BF. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production:Dominance of Nitrospira spp.[J]. Water Research, 2017, 127:239-248.
    [54] WANG H, PROCTOR CR, EDWARDS MA, PRYOR M, SANTO DOMINGO JW, RYU H, CAMPER AK, OLSON A, PRUDEN A. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system[J]. Environmental Science & Technology, 2014, 48(18):10624-10633.
    [55] WANG H, MASTERS S, EDWARDS MA, FALKINHAM 3rd JO, PRUDEN A. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm[J]. Environmental Science & Technology, 2014, 48(3):1426-1435.
    [56] 陈虎, 刘峰, 李迎春, 田川. 水厂砂滤池内氨氧化菌对氨氮去除的效能[J]. 净水技术, 2017, 36(3):57-62.CHEN H, LIU F, LI YC, TIAN C. Ammonia-nitrogen removal by ammonia-oxidizing bacteria (AOB) in sand filter of water treatment plant[J]. Water Purification Technology, 2017, 36(3):57-62 (in Chinese).
    [57] MARTINY AC, ALBRECHTSEN HJ, ARVIN E, MOLIN S. Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system:detection of a large nitrite-oxidizing population associated with Nitrospira spp.[J]. Applied and Environmental Microbiology, 2005, 71(12):8611-8617.
    [58] GÜLAY A, MUSOVIC S, ALBRECHTSEN HJ, AL-SOUD WA, SØRENSEN SJ, SMETS BF. Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters[J]. The ISME Journal, 2016, 10(9):2209-2222.
    [59] WANG H, MASTERS S, HONG YJ, STALLINGS J, FALKINHAM 3rd JO, EDWARDS MA, PRUDEN A. Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two amoebas[J]. Environmental Science & Technology, 2012, 46(21):11566-11574.
    [60] WAAK MB, HOZALSKI RM, HALLÉ C, LAPARA TM. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection[J]. Microbiome, 2019, 7(1):87.
    [61] SAKCHAM B, KUMAR A, CAO B. Extracellular DNA in monochloraminated drinking water and its influence on DNA-based profiling of a microbial community[J]. Environmental Science & Technology Letters, 2019, 6(5):306-312.
    [62] LI H, LI S, TANG W, YANG Y, ZHAO JF, XIA SQ, ZHANG WX, WANG H. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers[J]. Water Research, 2018, 136:160-168.
    [63] PROCTOR CR, REIMANN M, VRIENS B, HAMMES F. Biofilms in shower hoses[J]. Water Research, 2018, 131:274-286.
    [64] LIU H, WAHMAN DG, PRESSMAN JG. Evaluation of monochloramine and free chlorine penetration in a drinking water storage tank sediment using microelectrodes[J]. Environmental Science & Technology, 2019, 53(16):9352-9360.
    [65] BELEHRADEK J. Temperature and rate of enzyme action[J]. Nature, 1954, 173(4393):70-71.
    [66] JANTARAKASEM C, KASUGA I, KURISU F, FURUMAI H. Temperature-dependent ammonium removal capacity of biological activated carbon used in a full-scale drinking water treatment plant[J]. Environmental Science & Technology, 2020, 54(20):13257-13263.
    [67] JI P, RHOADS WJ, EDWARDS MA, PRUDEN A. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome[J]. The ISME Journal, 2017, 11(6):1318-1330.
    [68] NOWKA B, OFF S, DAIMS H, SPIECK E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages[J]. FEMS Microbiology Ecology, 2015, 91(3):fiu031.
    [69] FUJITANI H, MOMIUCHI K, ISHII K, NOMACHI M, KIKUCHI S, USHIKI N, SEKIGUCHI Y, TSUNEDA S. Genomic and physiological characteristics of a novel nitrite-oxidizing Nitrospira strain isolated from a drinking water treatment plant[J]. Frontiers in Microbiology, 2020, 11:545190.
    [70] KITS KD, SEDLACEK CJ, LEBEDEVA EV, HAN P, BULAEV A, PJEVAC P, DAEBELER A, ROMANO S, ALBERTSEN M, STEIN LY, DAIMS H, WAGNER M. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671):269-272.
    [71] STRAUSS EA, LAMBERTI GA. Regulation of nitrification in aquatic sediments by organic carbon[J]. Limnology and Oceanography, 2000, 45(8):1854-1859.
    [72] WHITE CS. Nitrification inhibition by monoterpenoids:theoretical mode of action based on molecular structures[J]. Ecology, 1988, 69(5):1631-1633.
    [73] JUNG MY, SEDLACEK CJ, KITS KD, MUELLER AJ, RHEE SK, HINK L, NICOL GW, BAYER B, LEHTOVIRTA-MORLEY L, WRIGHT C, de la TORRE JR, HERBOLD CW, PJEVAC P, DAIMS H, WAGNER M. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities[J]. The ISME Journal, 2022, 16(1):272-283.
    [74] MARTENS-HABBENA W, BERUBE PM, URAKAWA H, de la TORRE JR, STAHL DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266):976-979.
    [75] SAKOULA D, KOCH H, FRANK J, JETTEN MSM, van KESSEL MAH J, LÜCKER S. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification[J]. The ISME Journal, 2021, 15(4):1010-1024.
    [76] 许少怡, 肖锐, 柴文波, 王保战, 逯慧杰. 全程硝化菌微生物学特性及在水处理领域的应用潜力[J]. 微生物学报, 2021, 61(2):315-332.XU SY, XIAO R, CHAI WB, WANG BZ, LU HJ. Microbial characteristics and application potential of complete ammonia oxidation bacteria in water treatment system[J]. Acta Microbiologica Sinica, 2021, 61(2):315-332 (in Chinese).
    [77] WANG Z, ZHANG L, ZHANG FZ, JIANG H, REN S, WANG W, PENG YZ. Nitrite accumulation in comammox-dominated nitrification-denitrification reactors:effects of DO concentration and hydroxylamine addition[J]. Journal of Hazardous Materials, 2020, 384:121375.
    [78] de VET WWJM, van LOOSDRECHT MCM, RIETVELD LC. Phosphorus limitation in nitrifying groundwater filters[J]. Water Research, 2012, 46(4):1061-1069.
    [79] SHAFIEE RT, SNOW JT, ZHANG Q, RICKABY REM. Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1[J]. The ISME Journal, 2019, 13(9):2295-2305.
    [80] MUSIANI F, BROLL V, EVANGELISTI E, CIURLI S. The model structure of the copper-dependent ammonia monooxygenase[J]. JBIC Journal of Biological Inorganic Chemistry, 2020, 25(7):995-1007.
    [81] RUSER R, SCHULZ R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils-a review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(2):171-188.
    [82] BEECKMAN F, MOTTE H, BEECKMAN T. Nitrification in agricultural soils:impact, actors and mitigation[J]. Current Opinion in Biotechnology, 2018, 50:166-173.
    [83] KITAJIMA M, CRUZ MC, WILLIAMS RBH, WUERTZ S, WHITTLE AJ. Microbial abundance and community composition in biofilms on in-pipe sensors in a drinking water distribution system[J]. Science of the Total Environment, 2021, 766:142314.
    [84] TEKERLEKOPOULOU AG, PAVLOU S, VAYENAS DV. Removal of ammonium, iron and manganese from potable water in biofiltration units:a review[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(5):751-773.
    [85] ALBERS CN, ELLEGAARD-JENSEN L, HANSEN LH, SØRENSEN SR. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater[J]. Water Research, 2018, 129:1-10.
    [86] 陈仁杰, 刘明辉, 丁陈龙, 吴俊康, 荆肇乾. 基于水厂砂滤填料附着物的BAF启动及其硝化性能[J]. 中国给水排水, 2022, 38(8):25-30.CHEN RJ, LIU MH, DING CL, WU JK, JING ZQ. Startup of biological aerated filter seeded with attached microbes from sand filter in a waterworks and its nitrification performance[J]. China Water & Wastewater, 2022, 38(8):25-30 (in Chinese).
    [87] SCOTT DB, van DYKE MI, ANDERSON WB, HUCK PM. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems[J]. Canadian Journal of Microbiology, 2015, 61(12):965-976.
    [88] PROSSER JI, NICOL GW. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11):523-531.
    [89] ALFREDO K. The "Burn":water quality and microbiological impacts related to limited free chlorine disinfection periods in a chloramine system[J]. Water Research, 2021, 197:117044.
    [90] ALLEN JM, PLEWA MJ, WAGNER ED, WEI X, BOKENKAMP K, HUR K, JIA A, LIBERATORE HK, LEE CFT, SHIRKHANI R, KRASNER SW, RICHARDSON SD. Feel the burn:Disinfection byproduct formation and cytotoxicity during chlorine burn events[J]. Environmental Science & Technology, 2022, 56(12):8245-8254.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡栩丞,胡宇星,周爽,张晏晏,王虹. 饮用水系统硝化微生物分布规律、环境影响因素及调控应用的研究进展[J]. 微生物学通报, 2023, 50(4): 1607-1620

复制
分享
文章指标
  • 点击次数:260
  • 下载次数: 1071
  • HTML阅读次数: 844
  • 引用次数: 0
历史
  • 收稿日期:2022-09-14
  • 录用日期:2022-10-25
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码