科微学术

微生物学通报

环境耐药组及其健康风险的宏基因组学研究策略和方法
作者:
基金项目:

国家自然科学基金(52170185,51938001,52070111);中国博士后科学基金(2022M721815);清华大学“水木学者”计划


Metagenomic strategies and methods for studying environmental resistome and its health risk
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [108]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    抗生素耐药性在环境中的发展和传播对人体健康造成潜在风险。随着高通量测序技术和生物信息学方法的不断发展,宏基因组学技术被广泛应用于不同环境样本的抗生素耐药组研究。本文介绍了两种针对环境耐药组筛查的宏基因组学分析方法,总结了当前主流的生物信息学软件和数据库,并阐述了环境耐药组的风险评估框架和基于宏基因组学技术的相关实践,以期为环境耐药组的监测、风险评估和管控提供可行的路线图。

    Abstract:

    The development and spread of antibiotic resistance in the environment pose potential risks to human health. With the advances in high-throughput sequencing and bioinformatics, metagenomics has been widely used in the study of antibiotic resistomes in different environmental samples. This paper introduces two metagenomic methods for environmental resistome screening, summarizes the current mainstream bioinformatic tools and databases, and describes the risk assessment framework of environmental resistome and the related practice based on metagenomic technology. We aim to provide a feasible roadmap for the monitoring, risk assessment, and control of environmental resistome.

    参考文献
    [1] AMINOV RI. The role of antibiotics and antibiotic resistance in nature[J]. Environmental Microbiology, 2009, 11(12):2970-2988.
    [2] GRENNI P, ANCONA V, CARACCIOLO AB. Ecological effects of antibiotics on natural ecosystems:a review[J]. Microchemical Journal, 2018, 136:25-39.
    [3] HOLMES AH, MOORE LSP, SUNDSFJORD A, STEINBAKK M, REGMI S, KARKEY A, GUERIN PJ, PIDDOCK LJV. Understanding the mechanisms and drivers of antimicrobial resistance[J]. The Lancet, 2016, 387(10014):176-187.
    [4] BLAIR JMA, WEBBER MA, BAYLAY AJ, OGBOLU DO, PIDDOCK LJV. Molecular mechanisms of antibiotic resistance[J]. Nature Reviews Microbiology, 2015, 13(1):42-51.
    [5] ALLEN HK, DONATO J, WANG HH, CLOUD-HANSEN KA, DAVIES J, HANDELSMAN J. Call of the wild:antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259.
    [6] 朱永官, 欧阳纬莹, 吴楠, 苏建强, 乔敏. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊, 2015, 30(4):509-516.ZHU YG, OUYANG WY, WU N, SU JQ, QIAO M. Antibiotic resistance:sources and mitigation[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4):509-516 (in Chinese).
    [7] MARTÍNEZ JL. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887):365-367.
    [8] D'COSTA VM, KING CE, KALAN L, MORAR M, SUNG WWL, SCHWARZ C, FROESE D, ZAZULA G, CALMELS F, DEBRUYNE R, GOLDING GB, POINAR HN, WRIGHT GD. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461.
    [9] BHULLAR K, WAGLECHNER N, PAWLOWSKI A, KOTEVA K, BANKS ED, JOHNSTON MD, BARTON HA, WRIGHT GD. Antibiotic resistance is prevalent in an isolated cave microbiome[J]. PLoS One, 2012, 7(4):e34953.
    [10] KWON JH, POWDERLY WG. The post-antibiotic era is here[J]. Science, 2021, 373(6554):471.
    [11] O'NEILL J. Antimicrobial resistance:tackling a crisis for the health and wealth of nations[R]. The Review on Antimicrobial Resistance, 2014. https://amr-review.org/home.html.
    [12] 苏志国, 张衍, 代天娇, 陈嘉瑜, 张永明, 温东辉. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10):2217-2233.SU ZG, ZHANG Y, DAI TJ, CHEN JY, ZHANG YM, WEN DH. Antibiotic resistance genes and class 1 integron in the environment:research progress[J]. Microbiology China, 2018, 45(10):2217-2233 (in Chinese).
    [13] CHEN JY, SU ZG, DAI TJ, HUANG B, MU QL, ZHANG YM, WEN DH. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea Bays[J]. Journal of Environmental Sciences, 2019, 81:156-167.
    [14] LARSSON DGJ, FLACH CF. Antibiotic resistance in the environment[J]. Nature Reviews Microbiology, 2022, 20(5):257-269.
    [15] SU ZG, LI AL, CHEN JY, HUANG B, MU QL, CHEN LJ, WEN DH. Wastewater discharge drives ARGs spread in the coastal area:a case study in Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2020, 151:110856.
    [16] SU ZG, WEN DH, GU AZ, ZHENG YH, TANG YS, CHEN LJ. Industrial effluents boosted antibiotic resistome risk in coastal environments[J]. Environment International, 2023, 171:107714.
    [17] 陈嘉瑜, 苏志国, 姚鹏城, 黄备, 张永明, 温东辉. 废水排放对近海环境中抗生素抗性基因和微生物群落的影响[J]. 环境科学, 2022, 43(9):4616-4624.CHEN JY, SU ZG, YAO PC, HUANG B, ZHANG YM, WEN DH. Effects of wastewater discharge on antibiotic resistance genes and microbial community in a coastal area[J]. Environmental Science, 2022, 43(9):4616-4624 (in Chinese).
    [18] 董杰. 细菌获得性抗生素耐药基因研究进展[J]. 中国预防医学杂志, 2015, 16(1):71-74.DONG J. Research progress of bacterial acquired antibiotic resistance genes[J]. Chinese Preventive Medicine, 2015, 16(1):71-74 (in Chinese).
    [19] LAUREN BRITO I. Examining horizontal gene transfer in microbial communities[J]. Nature Reviews Microbiology, 2021, 19(7):442-453.
    [20] ENVIRONMENT UN. Frontiers 2017:emerging issues of environmental concern[R]. UN Environment, 2017, https://www.unep.org/resources/frontiers-2017-emerging-issues-environmental-concern.
    [21] ISABELLA S, ANNA NC, ROBERT L, DIMITAR M, TERESA L. State of the art on the contribution of water to antimicrobial resistance[R]. Publications Office of European Union, 2018.
    [22] PRUDEN A, PEI RT, STORTEBOOM H, CARLSON KH. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
    [23] KARKMAN A, DO TT, WALSH F, VIRTA MPJ. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology, 2018, 26(3):220-228.
    [24] 孙薇. 畜禽粪便厌氧发酵过程中抗生素抗性基因变化机理研究[D]. 杨凌:西北农林科技大学博士学位论文, 2017.SUN W. Variation mechanism of antibiotic resistance genes during anaerobic digestion with livestock manure[D]. Yangling:Doctoral Dissertation of Northwest A&F University, 2017 (in Chinese).
    [25] MIŁOBEDZKA A, FERREIRA C, VAZ-MOREIRA I, CALDERÓN-FRANCO D, GORECKI A, PURKRTOVA S, JAN BARTACEK, DZIEWIT L, SINGLETON CM, NIELSEN PH, WEISSBRODT DG, MANAIA CM. Monitoring antibiotic resistance genes in wastewater environments:the challenges of filling a gap in the One-Health cycle[J]. Journal of Hazardous Materials, 2022, 424(Pt C):127407.
    [26] GUPTA CL, TIWARI RK, CYTRYN E. Platforms for elucidating antibiotic resistance in single genomes and complex metagenomes[J]. Environment International, 2020, 138:105667.
    [27] BOOLCHANDANI M, D'SOUZA AW, DANTAS G. Sequencing-based methods and resources to study antimicrobial resistance[J]. Nature Reviews Genetics, 2019, 20(6):356-370.
    [28] PENG ZJ, MAO YJ, ZHANG N, ZHANG L, WANG Z, HAN MZ. Utilizing metagenomic data and bioinformatic tools for elucidating antibiotic resistance genes in environment[J]. Frontiers in Environmental Science, 2021, 9:757365.
    [29] BENGTSSON-PALME J, LARSSON DGJ, KRISTIANSSON E. Using metagenomics to investigate human and environmental resistomes[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(10):2690-2703.
    [30] WANG JH, LU J, ZHANG YX, WU J, LUO YM, LIU H. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems[J]. Bioresource Technology, 2018, 253:235-243.
    [31] DANG CY, XIA Y, ZHENG MS, LIU T, LIU W, CHEN Q, NI JR. Metagenomic insights into the profile of antibiotic resistomes in a large drinking water reservoir[J]. Environment International, 2020, 136:105449.
    [32] LIRA F, VAZ-MOREIRA I, TAMAMES J, MANAIA CM, MARTÍNEZ JL. Metagenomic analysis of an urban resistome before and after wastewater treatment[J]. Scientific Reports, 2020, 10:8174.
    [33] CHEN G, NING BT, SHI TL. Single-cell RNA-seq technologies and related computational data analysis[J]. Frontiers in Genetics, 2019, 10:317.
    [34] KIM H, KIM M, KIM S, LEE YM, SHIN SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics[J]. Environmental Pollution, 2022, 294:118634.
    [35] YIN XL, JIANG XT, CHAI BL, LI LG, YANG Y, COLE JR, TIEDJE JM, ZHANG T. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018, 34(13):2263-2270.
    [36] VĚTROVSKÝ T, BALDRIAN P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses[J]. PLoS One, 2013, 8(2):e57923.
    [37] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, JOAKIM LARSSON DG. The structure and diversity of human, animal and environmental resistomes[J]. Microbiome, 2016, 4(1):54.
    [38] SUNAGAWA S, MENDE DR, ZELLER G, IZQUIERDO-CARRASCO F, BERGER SA, KULTIMA JR, COELHO LP, ARUMUGAM M, TAP J, NIELSEN HB, RASMUSSEN S, BRUNAK S, PEDERSEN O, GUARNER F, de VOS WM, WANG J, LI JH, DORÉ J, EHRLICH SD, STAMATAKIS A, et al. Metagenomic species profiling using universal phylogenetic marker genes[J]. Nature Methods, 2013, 10(12):1196-1199.
    [39] CHU BTT, PETROVICH ML, CHAUDHARY A, WRIGHT D, MURPHY B, WELLS G, PORETSKY R. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments[J]. Applied and Environmental Microbiology, 2018, 84(5):e02168-e02117.
    [40] LEE K, KIM DW, CHA CJ. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data[J]. Journal of Microbiology, 2021, 59(3):270-280.
    [41] LIU B, POP M. ARDB-antibiotic resistance genes database[J]. Nucleic Acids Research, 2009, 37(suppl_1):D443-D447.
    [42] ALCOCK BP, RAPHENYA AR, LAU TTY, TSANG KK, BOUCHARD M, EDALATMAND A, HUYNH W, NGUYEN AL V, CHENG AA, LIU SH, MIN SY, MIROSHNICHENKO A, TRAN HK, WERFALLI RE, NASIR JA, OLONI M, SPEICHER DJ, FLORESCU A, SINGH B, FALTYN M, et al. CARD 2020:antibiotic resistome surveillance with the comprehensive antibiotic resistance database[J]. Nucleic Acids Research, 2020, 48(D1):D517-D525.
    [43] BORTOLAIA V, KAAS RS, RUPPE E, ROBERTS MC, SCHWARZ S, CATTOIR V, PHILIPPON A, ALLESOE RL, REBELO AR, FLORENSA AF, FAGELHAUER L, CHAKRABORTY T, NEUMANN B, WERNER G, BENDER JK, STINGL K, NGUYEN M, COPPENS J, XAVIER BB, MALHOTRA-KUMAR S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. The Journal of Antimicrobial Chemotherapy, 2020, 75(12):3491-3500.
    [44] DOSTER E, LAKIN SM, DEAN CJ, WOLFE C, YOUNG JG, BOUCHER C, BELK KE, NOYES NR, MORLEY PS. MEGARes 2.0:a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data[J]. Nucleic Acids Research, 2020, 48(D1):D561-D569.
    [45] ARANGO-ARGOTY GA, GURON GKP, GARNER E, RIQUELME MV, HEATH LS, PRUDEN A, VIKESLAND PJ, ZHANG L. ARGminer:a web platform for the crowdsourcing-based curation of antibiotic resistance genes[J]. Bioinformatics, 2020, 36(9):2966-2973.
    [46] GIBSON MK, FORSBERG KJ, DANTAS G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology[J]. The ISME Journal, 2015, 9(1):207-216.
    [47] ARANGO-ARGOTY G, GARNER E, PRUDEN A, HEATH LS, VIKESLAND P, ZHANG LQ. DeepARG:a deep learning approach for predicting antibiotic resistance genes from metagenomic data[J]. Microbiome, 2018, 6(1):23.
    [48] RUPPÉ E, GHOZLANE A, TAP J, PONS N, ALVAREZ AS, MAZIERS N, CUESTA T, HERNANDO-AMADO S, CLARES I, MARTÍNEZ JL, COQUE TM, BAQUERO F, LANZA VF, MÁIZ L, GOULENOK T, de LASTOURS V, AMOR N, FANTIN B, WIEDER I, ANDREMONT A, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method[J]. Nature Microbiology, 2019, 4(1):112-123.
    [49] WALLACE JC, PORT JA, SMITH MN, FAUSTMAN EM. FARME DB:a functional antibiotic resistance element database[J]. Database, 2017, 2017:baw165.
    [50] NAAS T, OUESLATI S, BONNIN RA, LAURA DABOS M, ZAVALA A, DORTET L, RETAILLEAU P, IORGA BI. Beta-lactamase database (BLDB)-structure and function[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1):917-919.
    [51] FISCHER M, THAI QK, GRIEB M, PLEISS J. DWARF-a data warehouse system for analyzing protein families[J]. BMC Bioinformatics, 2006, 7(1):495.
    [52] THAI QK, BÖS F, PLEISS J. The lactamase engineering database:a critical survey of TEM sequences in public databases[J]. BMC Genomics, 2009, 10:390.
    [53] FLANDROIS JP, LINA G, DUMITRESCU O. MUBII-TB-DB:a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis[J]. BMC Bioinformatics, 2014, 15:107.
    [54] SAHA SB, UTTAM V, VERMA V. U-CARE:user-friendly comprehensive antibiotic resistance repository of Escherichia coli[J]. Journal of Clinical Pathology, 2015, 68(8):648-651.
    [55] HUNT M, MATHER AE, SÁNCHEZ-BUSÓ L, PAGE AJ, PARKHILL J, KEANE JA, HARRIS SR. ARIBA:rapid antimicrobial resistance genotyping directly from sequencing reads[J]. Microbial Genomics, 2017, 3(10):e000131.
    [56] ROWE WPM, WINN MD. Indexed variation graphs for efficient and accurate resistome profiling[J]. Bioinformatics, 2018, 34(21):3601-3608.
    [57] KAMINSKI J, GIBSON MK, FRANZOSA EA, SEGATA N, DANTAS G, HUTTENHOWER C. High-specificity targeted functional profiling in microbial communities with ShortBRED[J]. PLoS Computational Biology, 2015, 11(12):e1004557.
    [58] LEPLAE R, HEBRANT A, WODAK SJ, TOUSSAINT A. ACLAME:a CLAssification of mobile genetic elements[J]. Nucleic Acids Research, 2004, 32(suppl_1):D45-D49.
    [59] PÄRNÄNEN K, KARKMAN A, HULTMAN J, LYRA C, BENGTSSON-PALME J, LARSSON DGJ, RAUTAVA S, ISOLAURI E, SALMINEN S, KUMAR H, SATOKARI R, VIRTA M. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements[J]. Nature Communications, 2018, 9:3891.
    [60] BROWN CL, MULLET J, HINDI F, STOLL JE, GUPTA S, CHOI M, KEENUM I, VIKESLAND P, PRUDEN A, ZHANG LQ. MobileOG-db:a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements[J]. Applied and Environmental Microbiology, 2022, 88(18):e0099122.
    [61] GALATA V, FEHLMANN T, BACKES C, KELLER A. PLSDB:a resource of complete bacterial plasmids[J]. Nucleic Acids Research, 2019, 47(D1):D195-D202.
    [62] KRAWCZYK PS, LIPINSKI L, DZIEMBOWSKI A. PlasFlow:predicting plasmid sequences in metagenomic data using genome signatures[J]. Nucleic Acids Research, 2018, 46(6):e35.
    [63] LIU M, LI XB, XIE YZ, BI DX, SUN JY, LI J, TAI C, DENG ZX, OU HY. ICEberg 2.0:an updated database of bacterial integrative and conjugative elements[J]. Nucleic Acids Research, 2019, 47(D1):D660-D665.
    [64] SIGUIER P, PEROCHON J, LESTRADE L, MAHILLON J, CHANDLER M. ISfinder:the reference centre for bacterial insertion sequences[J]. Nucleic Acids Research, 2006, 34(suppl_1):D32-D36.
    [65] MOURA A, SOARES M, PEREIRA C, LEITÃO N, HENRIQUES I, CORREIA A. INTEGRALL:a database and search engine for integrons, integrases and gene cassettes[J]. Bioinformatics, 2009, 25(8):1096-1098.
    [66] ARNDT D, GRANT JR, MARCU A, SAJED T, PON A, LIANG YJ, WISHART DS. PHASTER:a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Research, 2016, 44(W1):W16-W21.
    [67] STARIKOVA EV, TIKHONOVA PO, PRIANICHNIKOV NA, RANDS CM, ZDOBNOV EM, ILINA EN, GOVORUN VM. Phigaro:high-throughput prophage sequence annotation[J]. Bioinformatics, 2020, 36(12):3882-3884.
    [68] BERTELLI C, LAIRD MR, WILLIAMS KP, Simon Fraser University Research Computing Group, LAU BY, HOAD G, WINSOR GL, BRINKMAN FS. IslandViewer 4:expanded prediction of genomic Islands for larger-scale datasets[J]. Nucleic Acids Research, 2017, 45(W1):W30-W35.
    [69] ZHU QY, KOSOY M, DITTMAR K. HGTector:an automated method facilitating genome-wide discovery of putative horizontal gene transfers[J]. BMC Genomics, 2014, 15(1):717.
    [70] BANSAL MS, KELLIS M, KORDI M, KUNDU S. RANGER-DTL 2.0:rigorous reconstruction of gene-family evolution by duplication, transfer and loss[J]. Bioinformatics, 2018, 34(18):3214-3216.
    [71] SONG WZ, WEMHEUER B, ZHANG S, STEENSEN K, THOMAS T. MetaCHIP:community-level horizontal gene transfer identification through the combination of best-match and phylogenetic approaches[J]. Microbiome, 2019, 7(1):36.
    [72] PAL C, BENGTSSON-PALME J, RENSING C, KRISTIANSSON E, LARSSON DGJ. BacMet:antibacterial biocide and metal resistance genes database[J]. Nucleic Acids Research, 2014, 42(D1):D737-D743.
    [73] CHEN LH, YANG J, YU J, YAO ZJ, SUN LL, SHEN Y, JIN Q. VFDB:a reference database for bacterial virulence factors[J]. Nucleic Acids Research, 2005, 33(suppl_1):D325-D328.
    [74] SAYERS S, LI L, ONG E, DENG SZ, FU GH, LIN Y, YANG B, ZHANG S, FA ZZ, ZHAO B, XIANG ZS, LI YQ, ZHAO XM, OLSZEWSKI MA, CHEN LN, HE YQ. Victors:a web-based knowledge base of virulence factors in human and animal pathogens[J]. Nucleic Acids Research, 2019, 47(D1):D693-D700.
    [75] URBAN M, CUZICK A, SEAGER J, WOOD V, RUTHERFORD K, VENKATESH SY, de SILVA N, MARTINEZ MC, PEDRO H, YATES AD, HASSANI-PAK K, HAMMOND-KOSACK KE. PHI-base:the pathogen-host interactions database[J]. Nucleic Acids Research, 2020, 48(D1):D613-D620.
    [76] YOON SH, PARK YK, KIM JF. PAIDB v2.0:exploration and analysis of pathogenicity and resistance islands[J]. Nucleic Acids Research, 2015, 43(D1):D624-D630.
    [77] WATTAM AR, ABRAHAM D, DALAY O, DISZ TL, DRISCOLL T, GABBARD JL, GILLESPIE JJ, GOUGH R, HIX D, KENYON R, MACHI D, MAO CH, NORDBERG EK, OLSON R, OVERBEEK R, PUSCH GD, SHUKLA M, SCHULMAN J, STEVENS RL, SULLIVAN DE, et al. PATRIC, the bacterial bioinformatics database and analysis resource[J]. Nucleic Acids Research, 2014, 42(D1):D581-D591.
    [78] de NIES L, LOPES S, BUSI SB, GALATA V, HEINTZ-BUSCHART A, LACZNY CC, MAY P, WILMES P. PathoFact:a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data[J]. Microbiome, 2021, 9(1):49.
    [79] JOENSEN KG, SCHEUTZ F, LUND O, HASMAN H, KAAS RS, NIELSEN EM, AARESTRUP FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli[J]. Journal of Clinical Microbiology, 2014, 52(5):1501-1510.
    [80] CARR VR, SHKOPOROV A, HILL C, MULLANY P, MOYES DL. Probing the mobilome:discoveries in the dynamic microbiome[J]. Trends in Microbiology, 2021, 29(2):158-170.
    [81] 陈帅, 邹海燕, 高方舟, 吴黛灵, 张敏, 何良英, 应光国. 抗生素、重金属和杀生剂抗性共选择机制[J]. 生态毒理学报, 2020, 15(2):1-10.CHEN S, ZOU HY, GAO FZ, WU DL, ZHANG M, HE LY, YING GG. Co-selection mechanism of antibiotic, metal and biocide resistance[J]. Asian Journal of Ecotoxicology, 2020, 15(2):1-10 (in Chinese).
    [82] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, LARSSON DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16(1):964.
    [83] PAN Y, ZENG JX, LI LG, YANG JT, TANG ZY, XIONG WG, LI YF, CHEN S, ZENG ZL. Coexistence of antibiotic resistance genes and virulence factors deciphered by large-scale complete genome analysis[J]. mSystems, 2020, 5(3):e00821-e00819.
    [84] ESCUDEIRO P, POTHIER J, DIONISIO F, NOGUEIRA T. Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes[J]. mSphere, 2019, 4(3):e00135-e00119.
    [85] FORSBERG KJ, REYES A, WANG B, SELLECK EM, SOMMER MOA, DANTAS G. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111.
    [86] ASHBOLT NJ, AMÉZQUITA A, BACKHAUS T, BORRIELLO P, BRANDT KK, COLLIGNON P, COORS A, FINLEY R, GAZE WH, HEBERER T, LAWRENCE JR, LARSSON DGJ, McEWEN SA, RYAN JJ, SCHÖNFELD J, SILLEY P, SNAPE JR, van den EEDE C, TOPP E. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance[J]. Environmental Health Perspectives, 2013, 121(9):993-1001.
    [87] 董庆利, 王海梅, Pradeep K MALAKAR, 刘箐, 宋筱瑜, 田明胜, 陆冉冉. 我国食品微生物定量风险评估的研究进展[J]. 食品科学, 2015, 36(11):221-229.DONG QL, WANG HM, PRADEEP KM, LIU J, SONG XY, TIAN MS, LU RR. Review of progress in quantitative microbiological risk assessment in China[J]. Food Science. 2015, 36(11):221-229 (in Chinese).
    [88] 曲良娇, 黄正. 饮水微生物定量风险评估方法的研究进展[J]. 环境与健康杂志, 2015, 32(10):923-926.QU LJ, HUANG Z. Research progress of quantitative microbial risk assessment of drinking water[J]. Journal of Environment and Health, 2015, 32(10):923-926 (in Chinese).
    [89] MANAIA CM. Assessing the risk of antibiotic resistance transmission from the environment to humans:non-direct proportionality between abundance and risk[J]. Trends in Microbiology, 2017, 25(3):173-181.
    [90] BEN YJ, FU CX, HU M, LIU L, WONG MH, ZHENG CM. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:a review[J]. Environmental Research, 2019, 169:483-493.
    [91] CHEREAU F, OPATOWSKI L, TOURDJMAN M, VONG S. Risk assessment for antibiotic resistance in South East Asia[J]. BMJ, 2017, 358:j3393.
    [92] LARSSON DGJ, ANDREMONT A, BENGTSSON- PALME J, BRANDT KK, de RODA HUSMAN AM, FAGERSTEDT P, FICK J, FLACH CF, GAZE WH, KURODA M, KVINT K, LAXMINARAYAN R, MANAIA CM, NIELSEN KM, PLANT L, PLOY MC, SEGOVIA C, SIMONET P, SMALLA K, SNAPE J, et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance[J]. Environment International, 2018, 117:132-138.
    [93] 杜翠红. 中国抗生素类化学品足迹的计算及表征研究[D]. 大连:大连理工大学硕士学位论文, 2017.DU CH. Calculation and characterization on chemicals footprint of antibiotics in China[D]. Dalian:Master's Thesis of Dalian University of Technology, 2017 (in Chinese).
    [94] BENGTSSON-PALME J, LARSSON DGJ. Concentrations of antibiotics predicted to select for resistant bacteria:proposed limits for environmental regulation[J]. Environment International, 2016, 86:140-149.
    [95] ZHANG SX, ZHANG QQ, LIU YS, YAN XT, ZHANG B, XING C, ZHAO JL, YING GG. Emission and fate of antibiotics in the Dongjiang River Basin, China:implication for antibiotic resistance risk[J]. Science of the Total Environment, 2020, 712:136518.
    [96] RICO A, JACOBS R, den BRINK PJV, TELLO A. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario[J]. Environmental Pollution, 2017, 231:918-928.
    [97] KIENZLER A, BOPP S, HALDER M, EMBRY M, WORTH A. Application of new statistical distribution approaches for environmental mixture risk assessment:a case study[J]. Science of the Total Environment, 2019, 693:133510.
    [98] RICE EW, WANG P, SMITH AL, STADLER LB. Determining hosts of antibiotic resistance genes:a review of methodological advances[J]. Environmental Science & Technology Letters, 2020, 7(5):282-291.
    [99] NGUYEN AQ, VU HP, NGUYEN LN, WANG QL, DJORDJEVIC SP, DONNER E, YIN HB, NGHIEM LD. Monitoring antibiotic resistance genes in wastewater treatment:current strategies and future challenges[J]. Science of the Total Environment, 2021, 783:146964.
    [100] MARTÍNEZ JL, COQUE TM, BAQUERO F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2):116-123.
    [101] HU YR, JIANG L, SUN XY, WU JQ, MA L, ZHOU YB, LIN KF, LUO Y, CUI CZ. Risk assessment of antibiotic resistance genes in the drinking water system[J]. Science of the Total Environment, 2021, 800:149650.
    [102] MA LP, LI B, ZHANG T. New insights into antibiotic resistome in drinking water and management perspectives:a metagenomic based study of small-sized microbes[J]. Water Research, 2019, 152:191-201.
    [103] ZHANG AN, GASTON JM, DAI CL, ZHAO SJ, POYET M, GROUSSIN M, YIN XL, LI LG, van LOOSDRECHT MCM, TOPP E, GILLINGS MR, HANAGE WP, TIEDJE JM, MONIZ K, ALM EJ, ZHANG T. An omics-based framework for assessing the health risk of antimicrobial resistance genes[J]. Nature Communications, 2021, 12:4765.
    [104] OH M, PRUDEN A, CHEN CQ, HEATH LS, XIA K, ZHANG LQ. MetaCompare:a computational pipeline for prioritizing environmental resistome risk[J]. FEMS Microbiology Ecology, 2018, 94(7):fiy079.
    [105] LIANG JS, MAO GN, YIN XL, MA LP, LIU L, BAI YH, ZHANG T, QU JH. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment[J]. Water Research, 2020, 168:115160.
    [106] ZHANG ZY, ZHANG Q, WANG TZ, XU NH, LU T, HONG WJ, PENUELAS J, GILLINGS M, WANG MX, GAO WW, QIAN HF. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022, 13:1553.
    [107] SU ZG, WEN DH. Characterization of antibiotic resistance across Earth's microbial genomes[J]. Science of the Total Environment, 2022, 816:151613
    [108] SILVA V, CANIÇA M, CAPELO JL, IGREJAS G, POETA P. Diversity and genetic lineages of environmental staphylococci:a surface water overview[J]. FEMS Microbiology Ecology, 2020, 96(12):fiaa191.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏志国,陈吕军,温东辉. 环境耐药组及其健康风险的宏基因组学研究策略和方法[J]. 微生物学通报, 2023, 50(4): 1538-1558

复制
相关视频

分享
文章指标
  • 点击次数:346
  • 下载次数: 2278
  • HTML阅读次数: 1050
  • 引用次数: 0
历史
  • 收稿日期:2022-12-26
  • 录用日期:2023-02-06
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码