科微学术

微生物学通报

巢湖铜绿微囊藻Chao 1910的基因组学和磷代谢通路分析
作者:
基金项目:

国家自然科学基金(U19A2020);国家重点研发计划(2018YFA0903100)


Genome sequence analysis of phosphorus metabolism pathways of Microcystis aeruginosa Chao 1910 isolated from Chaohu Lake
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】铜绿微囊藻(Microcystis aeruginosa)广泛分布于温带湖泊,因产生微囊藻毒素且易成为蓝藻水华优势藻株而备受关注。【目的】基于全基因组序列分析和基因转录水平验证,阐明从巢湖新分离的铜绿微囊藻Chao 1910的主要代谢通路和磷营养高效利用机制。【方法】通过第三代测序技术拼接获得Chao 1910的全基因组序列,完成主要代谢通路的基因注释,并对与蓝藻水华优势藻株形成相关的磷代谢通路进行深入分析。【结果】比较基因组学表明,Chao 1910藻株与日本铜绿微囊藻NIES-843的亲缘关系最近,其糖酵解、磷酸戊糖途径和核苷酸合成等代谢通路的基因组成非常保守,同时具有完整的磷转运、磷吸收、多聚磷酸盐合成/分解等磷营养高效利用的通路。不同于其他铜绿微囊藻,Chao 1910藻株不具有微囊藻毒素合成基因簇,推测其主要依靠对磷营养的高效利用获取生存竞争优势。【结论】Chao 1910藻株是巢湖首株完成全基因组测序的铜绿微囊藻,这将有助于揭示其获得生存竞争优势的分子机制,为遏制巢湖蓝藻水华暴发提供依据。

    Abstract:

    [Background] Microcystis aeruginosa is ubiquitous in temperate lakes and has aroused wide concern since it is a dominant bloom-forming cyanobacterium capable of producing microcystins. [Objective] To elucidate the central metabolic pathways and the efficient phosphorus-utilizing mechanism in M. aeruginosa Chao 1910 (termed Chao 1910 for short) isolated from Chaohu Lake based on the whole-genome sequence analysis and transcription verification. [Methods] The whole genome sequence was obtained by the third-generation sequencing technique, and the genes encoding the central metabolic pathways, especially the phosphorus metabolic pathways, were annotated. [Results] Chao 1910 had the closest phylogenetic relationship with M. aeruginosa NIES-843 among the Microcystis strains with known full-length genome sequences. The genes involved in the metabolic pathways such as glycolysis, pentose phosphate pathway, and nucleotide synthesis were highly conserved in Chao 1910. The genome of Chao 1910 encoded the complete pathways of phosphate transport, phosphate absorption, polyphosphate synthesis/decomposition, and other efficient phosphorus utilization pathways. Unlike other strains of M. aeruginosa, Chao 1910 did not possess the gene cluster for microcystin synthesis, which indicated that it relied on efficient phosphorus utilization to gain the competitive advantage. [Conclusion] Chao 1910 is the first M. aeruginosa strain with completed sequencing of the whole genome isolated from Chaohu Lake. It helps us to reveal the molecular mechanism of competitive advantage for the bloom-forming cyanobacteria in Chaohu Lake.

    参考文献
    [1] de MARAIS DJ. Evolution. When did photosynthesis emerge on Earth?[J]. Science, 2000, 289(5485):1703-1705.
    [2] SCHIRRMEISTER BE, GUGGER M, DONOGHUE PC. Cyanobacteria and the great oxidation event:evidence from genes and fossils[J]. Palaeontology, 2015, 58(5):935-936.
    [3] HARKE MJ, STEFFEN MM, GOBLER CJ, OTTEN TG, WILHELM SW, WOOD SA, PAERL HW. A review of the global ecology, genomics, and biogeography of the toxiccyanobacterium, Microcystis spp.[J]. Harmful Algae, 2016, 54:4-20.
    [4] PÉREZ-CARRASCAL OM, TERRAT Y, GIANI A, FORTIN N, GREER CW, TROMAS N, SHAPIRO BJ. Coherence of Microcystis species revealed through population genomics[J]. The ISME Journal, 2019, 13(12):2887-2900.
    [5] CARMICHAEL WW. Cyanobacteria secondary metabolites-the cyanotoxins[J]. The Journal of Applied Bacteriology, 1992, 72(6):445-459.
    [6] LEZCANO MÁ, AGHA R, CIRÉS S, QUESADA A. Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation[J]. Harmful Algae, 2019, 81:77-85.
    [7] PEARSON LA, CROSBIE ND, NEILAN BA. Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains[J]. Marine and Freshwater Research, 2020, 71(5):701-716.
    [8] GOBLER CJ, BURKHOLDER JM, DAVIS TW, HARKE MJ, JOHENGEN T, STOW CA, van de WAAL DB. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms[J]. Harmful Algae, 2016, 54:87-97.
    [9] van WICHELEN J, VANORMELINGEN P, CODD GA, VYVERMAN W. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists[J]. Harmful Algae, 2016, 55:97-111.
    [10] REYNOLDS CS, WALSBY AE. Water-blooms[J]. Biological Reviews, 1975, 50(4):437-481.
    [11] KITCHENS CM, JOHENGEN TH, DAVIS TW. Establishing spatial and temporal patterns in Microcystis sediment seed stock viability and their relationship to subsequent bloom development in Western Lake Erie[J]. PLoS One, 2018, 13(11):e0206821.
    [12] WELKER M, ŠEJNOHOVÁ L, NÉMETHOVÁ D, DÖHREN H, JARKOVSKÝ J, MARŠÁLEK B. Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir[J]. Limnology and Oceanography, 2007, 52(2):609-619.
    [13] GER KA, URRUTIA-CORDERO P, FROST PC, HANSSON LA, SARNELLE O, WILSON AE, LÜRLING M. The interaction between cyanobacteria and zooplankton in a more eutrophic world[J]. Harmful Algae, 2016, 54:128-144.
    [14] SEDMAK B, KOSI G. The role of microcystins in heavy cyanobacterial bloom formation[J]. Journal of Plankton Research, 1998, 20(4):691-708.
    [15] 张民, 史小丽, 阳振, 陈开宁. 2012-2018年巢湖水质变化趋势分析和蓝藻防控建议[J]. 湖泊科学, 2020, 32(1):11-20.ZHANG M, SHI XL, YANG Z, CHEN KN. The variation of water quality from 2012 to 2018 in Lake Chaohu and the mitigating strategy on cyanobacterial blooms[J]. Journal of Lake Sciences, 2020, 32(1):11-20 (in Chinese).
    [16] 张民, 史小丽, 阳振, 陈开宁. 太湖和巢湖中微囊藻(Microcystis)与长孢藻(Dolichospermum)的长时序变化及其驱动因子[J]. 湖泊科学, 2021, 33(4):1051-1061.ZHANG M, SHI XL, YANG Z, CHEN KN. Characteristics and driving factors of the long-term shifts between Microcystis and Dolichospermum in Lake Taihu and Lake Chaohu[J]. Journal of Lake Sciences, 2021, 33(4):1051-1061 (in Chinese).
    [17] JACKREL SL, WHITE JD, EVANS JT, BUFFIN K, HAYDEN K, SARNELLE O, DENEF VJ. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-formingMicrocystis aeruginosa[J]. Molecular Ecology, 2019, 28(17):3994-4011.
    [18] ALLEN MM. Cyanobacterial cell inclusions[J]. Annual Review of Microbiology, 1984, 38:1-25.
    [19] KROMKAMP J, van den HEUVEL A, MUR LR. Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa[J]. British Phycological Journal, 1989, 24(4):347-355.
    [20] SANTOS-BENEIT F. The Pho regulon:a huge regulatory network in bacteria[J]. Frontiers in Microbiology, 2015, 6:402.
    [21] SANZ-LUQUE E, BHAYA D, GROSSMAN AR. Polyphosphate:a multifunctional metabolite in cyanobacteria and algae[J]. Frontiers in Plant Science, 2020, 11:938.
    [22] RACHEDI R, FOGLINO M, LATIFI A. Stress signaling in cyanobacteria:a mechanistic overview[J]. Life:Basel, Switzerland, 2020, 10(12):312.
    [23] WAN LL, CHEN XY, DENG QH, YANG L, LI XW, ZHANG JY, SONG CL, ZHOU YY, CAO XY. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession[J]. Harmful Algae, 2019, 84:46-55.
    [24] GANF GG, OLIVER RL. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake[J]. The Journal of Ecology, 1982, 70(3):829.
    [25] GRILLO JF, GIBSON J. Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus[J]. Journal of Bacteriology, 1979, 140(2):508-517.
    [26] STANIER RY, KUNISAWA R, MANDEL M, COHEN-BAZIRE G. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological reviews, 1971, 35(2), 171-205.
    [27] SEEMANN T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics:Oxford, England, 2014, 30(14):2068-2069.
    [28] MORIYA Y, ITOH M, OKUDA S, YOSHIZAWA AC, KANEHISA M. KAAS:an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35(Web Server issue):W182-W185.
    [29] HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, HERNÁNDEZ-PLAZA A, FORSLUND SK, COOK H, MENDE DR, LETUNIC I, RATTEI T, JENSEN LJ, von MERING C, BORK P. eggNOG 5.0:a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1):D309-D314.
    [30] STOTHARD P, WISHART DS. Circular genome visualization and exploration using CGView[J]. Bioinformatics:Oxford, England, 2005, 21(4):537-539.
    [31] TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7):3022-3027.
    [32] BLIN K, SHAW S, KLOOSTERMAN AM, CHARLOP-POWERS Z, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 6.0:improving cluster detection and comparison capabilities[J]. Nucleic Acids Research, 2021, 49(W1):W29-W35.
    [33] ARNDT D, GRANT JR, MARCU A, SAJED T, PON A, LIANG YJ, WISHART DS. PHASTER:a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Research, 2016, 44(W1):W16-W21.
    [34] ZAVREL T, SINETOVA M, ČERVENÝ J. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria[J]. BIO-PROTOCOL, 2015, 5(9):e1467.
    [35] RAY JM, BHAYA D, BLOCK MA, GROSSMAN AR. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942[J]. Journal of Bacteriology, 1991, 173(14):4297-4309.
    [36] PINTO F, PACHECO CC, FERREIRA D, MORADAS-FERREIRA P, TAMAGNINI P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria[J]. PLoS One, 2012, 7(4):e34983.
    [37] FORTIER LC, SEKULOVIC O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5):354-365.
    [38] SMITH AJ, LONDON J, STANIER RY. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli[J]. Journal ofO A, GORELOVA O, KARPOVA O, SELYAKH I, SEMENOVA L, CHIVKUNOVA O, BAULINA O, VINOGRADOVA E, PUGACHEVA T, SCHERBAKOV P, VASILIEVA S, LUKYANOV A, LOBAKOVA E. Phosphorus feast and famine in cyanobacteria:is luxury uptake of the nutrient just a consequence of acclimation to its shortage?[J]. Cells, 2020, 9(9):1933.r>[41] POTOCKI de MONTALK G, REMAUD-SIMEON M, WILLEMOT RM, SARÇABAL P, PLANCHOT V, MONSAN P. Amylosucrase from Neisseria polysaccharea:novel catalytic properties[J]. FEBS Letters, 2000, 471(2-3):219-223.
    [42] PEREZ-CENCI M, SALERNO GL. Functional characterization of Synechococcus amylosucrase and fructokinase encoding genes discovers two novel actors on the stage of cyanobacterial sucrose metabolism[J]. Plant Science, 2014, 224:95-102.
    [43] TETU SG, BRAHAMSHA B, JOHNSON DA, TAI V, PHILLIPPY K, PALENIK B, PAULSEN IT. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102[J]. The ISME Journal, 2009, 3(7):835-849.
    [44] DYHRMAN ST, JENKINS BD, RYNEARSON TA, SAITO MA, MERCIER ML, ALEXANDER H, WHITNEY LP, DRZEWIANOWSKI A, BULYGIN VV, BERTRAND EM, WU ZJ, BENITEZ-NELSON C, HEITHOFF A. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response[J]. PLoS One, 2012, 7(3):e33768.
    [45] GROSSMAN A. Acclimation of Chlamydomonas reinhardtii to its nutrient environment[J]. Protist, 2000, 151(3):201-224.
    [46] GHORBEL S, KORMANEC J, ARTUS A, VIROLLE MJ. Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24[J]. Journal of Bacteriology, 2006, 188(2):677-686.
    [47] HUDEK L, PREMACHANDRA D, WEBSTER WAJ, BRÄU L. Role of phosphate transport system component PstB1 in phosphate internalization by Nostoc punctiforme[J]. Applied and Environmental Microbiology, 2016, 82(21):6344-6356.
    [48] PITT FD, MAZARD S, HUMPHREYS L, SCANLAN DJ. Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium[J]. Journal of Bacteriology, 2010, 192(13):3512-3523.
    [49] KATHURIA S, MARTINY AC. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria[J]. Environmental Microbiology, 2011, 13(1):74-83.
    [50] HONG SJ, PAN QH, CHEN SY, ZU Y, XU CX, LI JH. Identification and characterization of alkaline phosphatase gene phoX in Microcystis aeruginosa PCC7806[J]. 3 Biotech, 2021, 11(5):218.
    [51] DVOŘÁK P, HAŠLER P, POULÍČKOVÁ A. Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from three continents:a spatial and temporal characterization[J]. PLoS One, 2012, 7(6):e40153.
    [52] STRUNECKÝ O, ELSTER J, KOMÁREK J. Phylogenetic relationships between geographically separate Phormidium cyanobacteria:is there a link between north and south polar regions?[J]. Polar Biology, 2010, 33(10):1419-1428.
    [53] GUPTA V, VYAS D. Antimicrobial effect of a cyclic peptide Nostophycin isolated from wastewater cyanobacteria, Nostoc calcicola[J]. Current Botany, 2021:94-101.
    [54] FUJII K, SIVONEN K, KASHIWAGI T, HIRAYAMA K, HARADA KI. Nostophycin, a novel cyclic peptide from the toxiccyanobacterium Nostoc sp. 152[J]. The Journal of Organic Chemistry, 1999, 64(16):5777-5782.
    [55] NISHIZAWA T, UEDA A, NAKANO T, NISHIZAWA A, MIURA T, ASAYAMA M, FUJII K, HARADA KI, SHIRAI M. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis[J]. The Journal of Biochemistry, 2011, 149(4):475-485.
    [56] TANABE Y, HODOKI Y, SANO T, TADA K, WATANABE MM. Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes[J]. Frontiers in Microbiology, 2018, 9:1150.
    [57] SINGH S, RAI PK, CHAU R, RAVI AK, NEILAN BA, ASTHANA RK. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds[J]. Water Research, 2015, 69:131-142.
    [58] FRANGEUL L, QUILLARDET P, CASTETS AM, HUMBERT JF, MATTHIJS HCP, CORTEZ D, TOLONEN A, ZHANG CC, GRIBALDO S, KEHR JC, ZILLIGES Y, ZIEMERT N, BECKER S, TALLA E, LATIFI A, BILLAULT A, LEPELLETIER A, DITTMANN E, BOUCHIER C, de MARSAC NT. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium[J]. BMC Genomics, 2008, 9:274.
    [59] KANEKO T, NAKAJIMA N, OKAMOTO S, SUZUKI I, TANABE Y, TAMAOKI M, NAKAMURA Y, KASAI FM, WATANABE A, KAWASHIMA K, KISHIDA Y, ONO A, SHIMIZU Y, TAKAHASHI C, MINAMI C, FUJISHIRO T, KOHARA M, KATOH M, NAKAZAKI N, NAKAYAMA S, et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843[J]. DNA Research, 2007, 14(6):247-256.
    [60] STOUGH JMA, TANG XM, KRAUSFELDT LE, STEFFEN MM, GAO G, BOYER GL, WILHELM SW. Molecular prediction of lytic vs lysogenic states for Microcystis phage:metatranscriptomic evidence of lysogeny during large bloom events[J]. PLoS One, 2017, 12(9):e0184146.
    [61] KONG Y, WANG Y, MIAO LH, MO SH, LI JK, ZHENG X. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms of Microcystis aeruginosa with microorganisms[J]. Microorganisms, 2022, 10(6):1136.
    [62] LIU JY, YANG CY, CHI YX, WU DH, DAI XZ, ZHANG XH, IGARASHI Y, LUO F. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake[J]. Journal of Basic Microbiology, 2019, 59(11):1112-1124.
    [63] WU LS, GUO XL, LIU XL, YANG H. NprR-NprX quorum-sensing system regulates the algicidal activity of Bacillus sp. strain S51107 against bloom-forming cyanobacterium Microcystis aeruginosa[J]. Frontiers in Microbiology, 2017, 8:1968.
    [64] SOLOVCHENK
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

计欣晔,余荣成,杜康,周丛照,李旭. 巢湖铜绿微囊藻Chao 1910的基因组学和磷代谢通路分析[J]. 微生物学通报, 2023, 50(4): 1491-1510

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 1324
  • HTML阅读次数: 1121
  • 引用次数: 0
历史
  • 收稿日期:2022-08-15
  • 录用日期:2022-09-12
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码