科微学术

微生物学通报

磷酸三(1-氯-2-丙基)酯降解菌筛选及其降解特性
作者:
基金项目:

沈阳市中青年科技创新人才支持计划(RC220128);国家自然科学基金(41807384)


Screening of tris-(1-chloro-2-propyl) phosphate-degrading bacteria and its degradation characteristics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】磷酸三(1-氯-2-丙基)酯[tris-(1-chloro-2-propyl) phosphate, TCIPP]作为全球广泛关注的新兴有机污染物,具有环境赋存含量高、不易生物降解等特点,亟须开发TCIPP的高效去除技术。【目的】获得具有较高TCIPP降解效率并可用于TCIPP污染修复的新菌株。【方法】利用梯度提高无机盐培养基中TCIPP浓度的方法,从TCIPP污染土壤中筛选出1株能够降解液体中高浓度TCIPP (100 mg/L)的菌株,根据16S rRNA基因序列分析对其进行鉴定,并首次对其降解液体中TCIPP的特性进行研究。【结果】所筛选的TCIPP降解菌株DT-6为苍白杆菌(Ochrobactrum sp.),它能够利用TCIPP作为唯一碳源和能源;当TCIPP初始浓度为50 mg/L、培养时间为7 d时DT-6的生物量最大,对TCIPP的降解率也达到最高,为34.6%;蔗糖的加入能够显著促进DT-6的生长,但却抑制了其对TCIPP的降解。【结论】本研究报道了一株TCIPP高效降解菌Ochrobactrum sp. DT-6,能够为环境中TCIPP污染的生物修复提供新的种质资源。

    Abstract:

    [Background] Tris-(1-chloro-2-propyl) phosphate (TCIPP), as an emerging organic pollutant of global wide concern, has the characteristics of high environmental concentration, difficult biodegradation, etc. It is urgent to develop efficient removal technology for TCIPP. [Objective] To obtain a new strain with high TCIPP degradation efficiency that can be used for TCIPP pollution remediation.[Methods] The strain which could degrade TCIPP with high concentration (up to 100 mg/L) in liquid was isolated from the TCIPP-contaminated soil by gradually increasing the concentration of TCIPP in the mineral salt medium. The strain was preliminarily identified according to 16S rRNA gene sequence analysis, and its characteristics of degrading TCIPP in liquid were further investigated. [Results] The strain DT-6 was identified as Ochrobactrum sp., and it could utilize TCIPP as the only carbon and energy source. When the initial concentration of TCIPP was 50 mg/L and the incubation time was 7 d, the biomass of the DT-6 strain was the largest and the degradation rate of TCIPP reached the highest (34.6%). The addition of sucrose significantly promoted the growth of the DT-6 strain but inhibited the degradation of TCIPP. [Conclusion] This study reported a highly efficient TCIPP-degrading strain, Ochrobactrum sp. DT-6, which could provide new germplasm resources for the bioremediation of TCIPP pollution in the environment.

    参考文献
    [1] van DER VEEN I, de BOER J. Phosphorus flame retardants:properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153.
    [2] FAN X, KUBWABO C, RASMUSSEN P, WU F. Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques[J]. Science of the Total Environment, 2014, 491-492:80-86.
    [3] LUO Q, SHAN Y, MUHAMMAD A, WANG SY, SUN LN, WANG H. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China[J]. Environmental Science and Pollution Research, 2018, 25(31):31752-31761.
    [4] LUO Q, GU L, WU Z, SHAN Y, WANG H, SUN LN. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China[J]. Chemosphere, 2020, 250:126297.
    [5] WANG Y, YAO Y, LI W, ZHU HK, WANF L, SUN HW, KANNAN K. A nationwide survey of 19 organophosphate esters in soils from China:spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671:528-535.
    [6] YANG Y, CHEN P, MA ST, LU SY, YU YX, AN TC. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9):1528-1560.
    [7] LUO Q, WU ZP, WANG CC, GU LY, LI YJ, WANG H. Seasonal variation, source identification, and risk assessment of organophosphate ester flame retardants and plasticizers in surficial sediments from Liao River estuary wetland, China[J]. Marine Pollution Bulletin, 2021, 173:112947.
    [8] WANG RM, TANG JH, XIE ZY, MI WY, CHEN YJ, WOLSCHKE H, TIAN CG, PAN XH, LUO YM, EBINGHUAS R. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China[J]. Environmental Pollution, 2015, 198:172-178.
    [9] LEE S, CHO HJ, CHOI W, MOON HB. Organophosphate flame retardants (OPFRs) in water and sediment:occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130:105-112.
    [10] LUO Q, LI Y, WU Z, WANG XX, WANG CC, SHAN Y, SUN LN. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. SuZhou)[J]. Chemosphere, 2021, 277:130347.
    [11] SU GY, LETCHER RJ, YU HX. Organophosphate flame retardants and plasticizers in aqueous solution:pH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15):8103-8111.
    [12] FANG YD, KIM E, STRATHMANN TJ. Mineral-and base-catalyzed hydrolysis of organophosphate flame retardants:potential major fate-controlling sink in soil and aquatic environments[J]. Environmental Science & Technology, 2018, 52(4):1997-2006.
    [13] YU XL, YIN H, YE SJ, PENG H, LU GN, DANG Z. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis:kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses[J]. Chemical Engineering Journal, 2019, 374:263-273.
    [14] YU XL, YIN H, PENG H, LU GN, LIU ZH, DING Z. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide[J]. Chemosphere, 2020, 241:124991.
    [15] QIN P, LU SY, LIU XH, WANG GQ, ZHANG YX, LI DL, WAN ZF. Removal of tri-(2-chloroisopropyl) phosphate (TCPP) by three types of constructed wetlands[J]. Science of the Total Environment, 2020, 749:141668.
    [16] 李瑜婕, 罗庆, 王聪聪, 吴中平, 张截流. 玉米秸秆生物炭对磷酸三(2-氯异丙基)酯的吸附特性及机理[J]. 农业环境科学学报, 2023, 42(1):112-120.LI YJ, LUO Q, WANG CC, WU ZP, ZHANG JL. Adsorption characteristics and mechanism of tris(2-chloroisopropyl) phosphate from corn straw biochar[J]. Journal of Agro-Environment Science, 2023, 42(1):112-120 (in Chinese).
    [17] 罗庆, 吴中平, 王聪聪, 李瑜婕. 四种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究[J/OL]. 环境工程, 2022[2022-11-10]. https://kns.cnki.net/kcms/detail/11.2097.X.20221109.1829.028.html. LUO Q, WU ZP, WANG CC, LI YJ. Study on the remediation capability of four herbs in the chlorinated organophosphate flame retardants contaminated soil[J/OL]. Environmental Engineering, 2022[2022-11-10]. https://kns.cnki.net/kcms/detail/11.2097.X.20221109.1829.028.html (in Chinese).
    [18] TAKAHASHI S, KAWASHIMA K, KAWASAKI M, KAMITO J, ENDO Y, AKATSU K, HORINO S, YAMADA RH, KERA Y. Enrichment and characterization of chlorinated organophosphate ester-degrading mixed bacterial cultures[J]. Journal of Bioscience and Bioengineering, 2008, 106(1):27-32.
    [19] TAKAHASHI S, KATANUMA H, ABE K, KERA Y. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1[J]. Applied Microbiology and Biotechnology, 2017, 101(5):2153-2162.
    [20] WANG XX, SUN LN, WANG H, WU H, CHEN S, ZHENG CH. Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil[J]. Environmetal Technology, 2018, 39(13):1733-1744.
    [21] 刘志国, 崔步云, 夏咸柱. 人苍白杆菌研究进展[J]. 微生物学报, 2015, 55(8):977-982.LIU ZG, CUI BY, XIA XZ. Research progress of Ochrobactrum anthropic-a review[J]. Acta Microbiologica Sinica, 2015, 55(8):977-982 (in Chinese).
    [22] VILLAGRASA E, BALLESTEROS B, OBIOL A, MILLACH L, ESTEVE I, SOLE A. Multi-approach analysis to assess the chromium(III) immobilization by Ochrobactrum anthropi DE2010[J]. Chemosphere, 2020, 238:124663.
    [23] CHEN HW, XU M, MA XW, TONG ZH, LIU DF. Isolation and characterization of a chlorate-reducing bacterium Ochrobactrum anthropi XM-1[J]. Journal of Hazardous Materials, 2019, 380:120873.
    [24] EL-SAYED WS, IBRAHIM MK, ABU-SHADY M, EL-BEIH F, OHMURA N, SAIKI H, ANDO A. Isolation and identification of a novel strain of the genus Ochrobactrum with phenol-degrading activity[J]. Journal of Bioscience and Bioengineering, 2003, 96(3):310-312.
    [25] 徐伟超, 吴翠平, 张玉秀, 张琪, 张怡鸣. 喹啉降解菌Ochrobactrum sp.的好氧降解特性及其在焦化废水中的生物强化作用[J]. 环境科学, 2017, 38(5):2030-2035.XU WC, WU CP, ZHANG YX, ZHANG Q, ZHANG YM. Aerobic degradation characteristics of the quinoline-degrading strain Ochrobactrum sp. and its bioaugmentation in coking wastewater[J]. Environmental Science, 2017, 38(5):2030-2035 (in Chinese).
    [26] WU YR, HE TT, ZHONG MQ, ZHANG YL, LI EM, HUANG TW, HU Z. Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization[J]. Journal of Environmental Sciences, 2009, 21(10):1446-1451.
    [27] NSHIMIYIMANA JB, KHADKA S, ZOU P, ADHIKARI S, PROSHAD R, THAPA A, XIONG L. Study on biodegradation kinetics of di-2-ethylhexyl phthalate by newly isolated halotolerant Ochrobactrum anthropi strain L1-W[J]. BMC Research Notes, 2020, 13(1):252.
    [28] 谢文娟, 林爱军, 杨晓进, 王凤花, SHIM Hojae. 一株降解芘的苍白杆菌的分离、鉴定及性能表征[J]. 北京化工大学学报(自然科学版), 2011, 38(3):76-80 (in Chinese).XIE WJ, LIN AJ, YANG XJ, WANG FH, HOJAE S. Isolation, identification and characteristics of pyrene degrading bacteria Ochrobactrum sp.[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2011, 38(3):76-80 (in Chinese).
    [29] 李豪, 王传文, 王孟冬, 张然, 张振东, 桂仲争, 潘保良. 一株新型莫能菌素高效降解菌的分离鉴定及其降解性能解析[J]. 生物工程学报, 2022, 38(7):2618-2627.LI H, WANG CW, WANG MD, ZHANG R, ZHANG ZD, GUI ZZ, PAN BL. Isolation, identification and biodegradation characterization of a novel monensin-degrading bacterial strain[J]. Chinese Journal of Biotechnology, 2022, 38(7):2618-2627 (in Chinese).
    [30] 王镔, 蔡凯, 邵汝英, 赵振华, 王帅, 高峰, 蒋伟群. 苯胺高效降解菌的筛选及共代谢机制[J]. 环境保护科学, 2020, 46(4):117-121.WANG B, CAI K, SHAO RY, ZHAO ZH, WANG S, GAO F, JIANG WQ. Study on the screening of aniline-degrading strain and its co-metabolism mechanism[J]. Environmental Protection Science, 2020, 46(4):117-121 (in Chinese).
    [31] 杨雷, 彭涛, 张晋娜, 石义静, 史文俊, 应光国. 一株高效1,4-雄烯二酮降解菌的筛选、鉴定及其降解转化特性研究[J]. 环境科学学报, 2021, 41(3):940-950.YANG L, PENG T, ZHANG JN, SHI YJ, SHI WJ, YING GG. Isolation and identification of a highly efficient androsta-1,4-diene-3,17-dione degrading bacterium and its degradation characteristics[J]. Acta Scientiae Circumstantiae, 2021, 41(3):940-950 (in Chinese).
    [32] 黄秀秀, 左宇环, 李腾飞, 张朝晖, 王亮, 赵斌, 李君敬, 李晓峰. 外加碳源及固定化对荧蒽降解菌降解性能的强化作用[J]. 水生态学杂志, 2020, 41(3):107-114.HUANG XX, ZUO YH, LI TF, ZHANG ZH, WANG L, ZHAO B, LI JJ, LI XF. Increasing the effectiveness of a fluoranthene-degrading microorganism by immobilization and adding a carbon source[J]. Journal of Hydroecology, 2020, 41(3):107-114 (in Chinese).
    [33] MORI T, KONDO O, KAWAGISHI H, HIRAI H. Effects of glucose concentration on ethanol fermentation of white-rot fungus Phanerochaete sordida YK-624 under aerobic conditions[J]. Current Microbiology, 2019, 76(3):263-269.
    [34] 范罗圣, 吴涓, 胡丁璠, 荚荣. 十溴联苯醚降解菌的分离鉴定、降解特性及降解机理[J]. 微生物学通报, 2023, 50(1):78-90.FAN LS, WU J, HU DF, JIA R. Isolation, identification, degradation characteristics and mechanisms of decabromodiphenyl ether degrading bacteria[J]. Microbiology China, 2023, 50(1):78-90 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗庆,张截流,吴中平,王聪聪,李瑜婕. 磷酸三(1-氯-2-丙基)酯降解菌筛选及其降解特性[J]. 微生物学通报, 2023, 50(4): 1481-1490

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-27
  • 录用日期:2023-02-15
  • 在线发布日期: 2023-04-10
  • 出版日期: 2023-04-20
文章二维码