科微学术

微生物学通报

ClpP2蛋白失活对集胞藻PCC6803生长、光合作用和蛋白质组的影响
作者:
基金项目:

国家自然科学基金(31870756)


Effects of ClpP2 protein inactivation on growth, photosynthesis, and proteome of Synechocystis sp. PCC6803
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】蛋白酶能够降解细胞中错误折叠或是无功能的蛋白,Clp家族蛋白就是一类重要的蛋白酶复合物。Clp蛋白酶复合物的水解核心是ClpP,集胞藻PCC6803中存在4种不同的ClpP蛋白,分别为ClpP1-ClpP4。作为重要的蛋白水解复合物的功能组分,目前对集胞藻ClpP的研究十分有限,对其生理功能与调控底物的研究甚少。【目的】选择集胞藻为研究对象探究ClpP2蛋白的功能,鉴定其潜在底物,为集胞藻ClpP2作用机制提供实验支撑。【方法】构建集胞藻ClpP2突变株(ΔClpP2),进行其生长实验和光合生理功能研究。通过标记定量蛋白质组学技术(isobaric tag for relative absolute quantitation, iTRAQ)鉴定ClpP2调控的靶标蛋白,生物信息学分析底物蛋白参与的代谢通路,最后利用平行反应监测(parallel reaction monitoring, PRM)技术对部分定量数据进行验证。【结果】ΔClpP2可以在自然条件下光合自养生长至对数生长期,但高光或高温胁迫下则无法正常生长。相较于野生型,ΔClpP2有着显著降低的PSⅡ电子传递效率及PSⅠ环式电子传递活性。通过iTRAQ定量蛋白质组学手段,ΔClpP2相对于WT共鉴定到206个差异表达蛋白,其中131个上调、75个下调,为ClpP2蛋白酶提供了丰富的潜在底物库。基因本体论(gene ontology, GO)分析发现ClpP2主要参与各种物质的转运,其中ABC蛋白转运途径显著被富集。利用PRM技术对34个差异表达的蛋白进行了验证。【结论】ClpP2蛋白不是集胞藻生长所必需,但在高温或者高光胁迫下是必不可少的,其失活会降低集胞藻光合系统活性。ClpP2可能通过调控离子转运进而影响光合系统。ClpP2很可能与ClpX结合形成蛋白酶复合物。

    Abstract:

    [Background] Proteases can degrade the misfolded or nonfunctional proteins in cells. Clp family protein is one of the important protease complexes. ClpP is the core of proteolysis of Clp protease complex. According to genomic data, there are four different ClpP proteins in Synechocystis sp. PCC6803, namely ClpP1–ClpP4. As a vital functional component of proteolytic complex, ClpP in Synechocystis is currently poorly studied. The study on its physiological function and substrate regulation is limited. [Objective] To explore the functions of ClpP2 in Synechocystis and identify potential substrate clusters, thereby providing experimental support for the mechanism research of ClpP2. [Methods] The ClpP2 mutant strain (ΔClpP2) was constructed, and the growth experiment and photosynthetic system characteristic experiment were carried out. Target proteins regulated by ΔClpP2 were identified by isobaric tag for relative absolute quantitation (iTRAQ), and the metabolic pathways involved in the substrate proteins were analyzed via bioinformatics. Finally, parallel reaction monitoring (PRM) was used to verify part of the quantitative data. [Results]ΔClpP2 grew into the logarithmic phase through photoautotrophy under natural conditions, but did not grow normally when met high-light or high-temperature stress. Compared with the wild-type (WT), ΔClpP2 showed significantly reduced photosystem Ⅱ (PSⅡ) electron transport efficiency and circle electron transport activity of photosystemⅠ(PSⅠ). A total of 206 differentially expressed proteins in ΔClpP2 were identified by iTRAQ quantitative proteomics. Among them, 131 were up-regulated and 74 were down-regulated, which provided a rich substrate library. Gene Ontology (GO) analysis showed that ClpP2 was mainly involved in the transport of various substances, and ABC transporter pathway was enriched notably. Thirty-four differentially expressed proteins were successfully verified by PRM technology. [Conclusion] ClpP2 is not necessary for the growth of Synechocystis, but is essential when Synechocystis meets high-temperature or high-light stress. ClpP2 inactivation reduces the activity of the photosynthetic system in Synechocystis. ClpP2 might affect the photosynthetic system by regulating ion transport. ClpP2 is likely to bind with ClpX to form a protease complex.

    参考文献
    [1] NISHIMURA K, van WIJK KJ. Organization, function and substrates of the essential Clp protease system in plastids[J]. Biochimica et Biophysica Acta, 2015, 1847(9):915-930.
    [2] REI LIAO, van WIJK KJ. Discovery of AAA+ protease substrates through trapping approaches[J]. Trends in Biochemical Sciences, 2019, 44(6):528-545.
    [3] SAUER RT, BAKER TA. AAA+ proteases:ATP-fueled machines of protein destruction[J]. Annual Review of Biochemistry, 2011, 80:587-612.
    [4] BOUCHNAK I, van WIJK KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts:a comparative analysis[J]. Journal of Biological Chemistry, 2021, 296:100338.
    [5] MABANGLO MF, HOURY WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules[J]. Journal of Biological Chemistry, 2022, 298(5):101781.
    [6] KIM S, ZUROMSKI KL, BELL TA, SAUER RT. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP[J]. eLife, 2020, 9.
    [7] SOKOLENKO A, POJIDAEVA E, ZINCHENKO V, PANICHKIN V, GLASER VM, HERRMANN RG, SHESTAKOV SV. The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts[J]. Current Genetics, 2002, 41(5):291-310.
    [8] STANNE TM, POJIDAEVA E, ANDERSSON FI, CLARKE AK. Distinctive types of ATP-dependent Clp proteases in cyanobacteria[J]. Journal of Biological Chemistry, 2007, 282(19):14394-14402.
    [9] HAVAUX M, GUEDENEY G, HAGEMANN M, YEREMENKON, MATTHIJS HCP, JEANJEAN R. The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress[J]. FEBS Letters, 2005, 579(11):2289-2293.
    [10] 程建峰, 陈根云, 沈允钢. 植物叶片特征与光合性能的关系[J]. 中国生态农业学报, 2012, 20(4):466-473. CHENG JF, CHEN GY, SHEN YG. Relational analysis of leaf characteristics and photosynthetic capacities of plants[J]. 中国生态农业学报, 2012, 20(4):466-473.
    [11] SHIKANAI T, ENDO T, HASHIMOTO T, YAMADA Y, ASADA K, YOKOTA A. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I[J]. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(16):9705-9709.
    [12] GOTOH E, MATSUMOTO M, OGAWA K, KOBAYASHI Y, TSUYAMA M. A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis:a new platform for the in vivo investigation of the chloroplast redox state[J]. Photosynthesis Research, 2010, 103(2):111-123.
    [13] GENTY B, BRIANTAIS JM, BAKER NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990(1):87-92.
    [14] KLUGHAMMER C, SCHREIBER U. Complementary PS Ⅱ quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method[J]. PAM Application Notes, 2008.
    [15] LIN XH, YANG MK, LIU X, CHENG ZY, GE F. Characterization of lysine monomethylome and methyltransferase in model cyanobacterium Synechocystis sp. PCC 6803[J]. Genomics, Proteomics & Bioinformatics, 2020, 18(3):289-304.
    [16] YANG MK, YANG YH, CHEN Z, ZHANG J, LIN Y, WANG Y, XIONG Q, LI T, GE F, BRYANT DA, ZHAO JD. Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes[J]. Proceedings of National Academy of Sciences of the United States of America, 2014, 111(52):E5633-E5642.
    [17] PANICHKIN VB, GLAZER VM, ZINCHENKO VV, SOKOLENKO A;HERRMANN RG, SHESTAKOV SV. clpP2 gene encoding peptidase in cyanobacteria Synechocystis sp. PCC 6803 controls the sensitivity of cells to photoinhibition[J]. Izvestiia Akademii Nauk Seriia Biologicheskaia, 2001(3):312-317.
    [18] BJÖRKMAN O, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 1987, 170(4):489-504.
    [19] ROHÁČEK K, SOUKUPOVÁ J, BARTÁK M. Chlorophyll fluorescence:a wonderful tool to study plant physiology and plant stress[J]. Plant Cell Compartments-Selected Topics, 2008:41-104.
    [20] SCHREIBER U, KLUGHAMMER C, KOLBOWSKI J. High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications[J]. PAM Application Notes, 2011, 1:1-21.
    [21] DENG Y, YE JY, MI HL. Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803[J]. Plant Cell Physiology, 2003, 44(5):534-540.
    [22] XU M, LÜ J, FU PC, Mi HL. Oscillation kinetics of post-illumination increase in chl fluorescence in cyanobacterium Synechocystis PCC 6803[J]. Frontiers in Plant Science, 2016, 7:108.
    [23] YU L, ZHAO J, MUHLENHOFF U, GOLBECK JH. PsaE is required for in vivo cyclic electron flow around photosystem I in the cyanobacterium Synechococcus sp. PCC 7002[J]. Plant Physiology, 1993, 103(1):171-180.
    [24] HUANG CH, YUAN XL, ZHAO JD, BRYANT DA. Kinetic analyses of state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and its mutant strains impaired in electron transport[J]. Biochimica et Biophysica Acta, 2003, 1607(2):121-130.
    [25] FEILKE K, AJLANI G, KRIEGER-LISZKAY A. Overexpression of plastid terminal oxidase in Synechocystis sp. PCC 6803 alters cellular redox state[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2017, 372(1730).
    [26] HOLLAND SC, ARTIER J, MILLER NT, CANO M, YU JP, GHIRARDI ML, BURNAPA RL. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance[J]. Algal Research, 2016, 20:87-99.
    [27] MUNEKAGE Y, HASHIMOTO M, MIYAKE C, TOMIZAWA KI, ENDO T, TASAKA M, SHIKANAI T. Cyclic electron flow around photosystem I is essential for photosynthesis[J]. Nature, 2004, 429(6991):579-582.
    [28] KUSAMA S, MIYAKE C, NAKANISHI S, SHIMAKAWA G. Dissection of respiratory and cyclic electron transport in Synechocystis sp. PCC 6803[J]. Journal of Plant Research, 2022, 135(4):555-564.
    [29] BADARAU A, DENNISON C. Thermodynamics of copper and zinc distribution in the cyanobacterium Synechocystis PCC 6803[J]. Proceedings of National Academy of Sciences of the United States of America, 2011, 108(32):13007-13012.
    [30] TOTTEY S, PATTERSON CJ, BANCI L, BERTINI I, FELLI IC, PAVELKOVA A, DAINTY SJ, PERNIL R, WALDRON KJ, FOSTER AW, ROBINSON NJ. Cyanobacterial metallochaperone inhibits deleterious side reactions of copper[J]. Proceedings of National Academy of Sciences of the United States of America, 2012, 109(1):95-100.
    [31] TRENTINI DB, SUSKIEWICZ MJ, HEUCK A, KURZBAUER R, DESZCZ L, MECHTLER K, CLAUSEN T. Arginine phosphorylation marks proteins for degradation by a Clp protease[J]. Nature, 2016, 539(7627):48-53.
    [32] KIRSCH VC, FETZER C, SIEBER SA. Global inventory of ClpP- and ClpX-regulated proteins in Staphylococcus aureus[J]. Journal of Proteome Research, 2021, 20(1):867-879.
    [33] IMAI K, KITAYAMA Y, KONDO T. Elucidation of the role of clp protease components in circadian rhythm by genetic deletion and overexpression in cyanobacteria[J]. Journal of Bacteriology, 2013, 195(19):4517-4526.
    [34] BURUT-ARCHANAI S, EATON-RYE JJ, INCHAROENSAKDI A. Na+-stimulated phosphate uptake system in Synechocystis sp. PCC 6803 with Pst1 as a main transporter[J]. BMC Microbiology, 2011, 11:225.
    [35] ANDRIZHIYEVSKAYA EG, SCHWABE TME, GERMANO M, D'HAENE S, KRUIP J, van GRONDELLE R, DEKKER JP. Spectroscopic properties of PSI-IsiA super complexes from the cyanobacterium Synechococcus PCC 7942[J]. Biochimica et Biophysica Acta, 2002, 1556(2/3):265-272.
    [36] KOMENDA J, LUPÍNKOVÁ L, KOPECKÝ J. Absence of the psbH gene product destabilizes photosystem Ⅱcomplex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803[J]. European Journal of Biochemistry, 2002, 269(2):610-619.
    [37] THOMAS DJ, THOMAS J, YOUDERIAN PA, HERBERT SK. Photoinhibition and light-induced cyclic electron transport in ndhB- and psaE- mutants of Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology, 2001, 42(8):803-812.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王雅琦,张宇萌,林小煌,杨明坤,葛峰. ClpP2蛋白失活对集胞藻PCC6803生长、光合作用和蛋白质组的影响[J]. 微生物学通报, 2023, 50(3): 1205-1219

复制
分享
文章指标
  • 点击次数:248
  • 下载次数: 974
  • HTML阅读次数: 907
  • 引用次数: 0
历史
  • 收稿日期:2022-07-09
  • 录用日期:2022-08-26
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码