科微学术

微生物学通报

三个木霉菌株防病促生效应
作者:
基金项目:

财政部和农业农村部国家现代农业产业技术体系(CARS-21);四川省科技厅区域合作项目(2021YFQ0022);国家自然科学基金(31701830);现代农业产业技术体系(SCCXTD-2020-19);四川省农业科学院领军人才研究基金(2019LJRC036);四川省农业科学院拔尖人才研究基金(2020BJRC023);四川省财政自主创新项目(2022ZZCX078);亚热带农业生物资源保护与利用国家重点实验室开发课题(SKLCUSA-b202206);四川省农业科学院中试熟化项目(2022ZSSFGH15)


Diseases control and plant growth promotion effect of three Trichoderma strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】木霉(Trichoderma sp.)是重要的生防微生物资源,对不同的木霉菌株进行生物学特性比较,可为获得功能较广的复配型生防菌剂提供参考信息。【目的】通过对绿木霉(Trichoderma virens) T23、哈茨木霉(Trichoderma harzianum) T22、G30的防病效果及对作物的促生潜力等生物学特性进行比较分析,明确不同菌株的生物功能差异。【方法】用平板拮抗法比较分析菌株T23、T22、G30对植物病原真菌的拮抗效果;用乙酸乙酯萃取法对菌株T23、T22、G30培养液中的胶毒素进行提取并通过高效液相色谱法(high-performance liquid chromatography, HPLC)检测胶毒素;用打孔法比较分析培养液萃取物对植物病原真菌的拮抗效果;通过温室接种验证菌株T23、T22、G30的防病效果;分别以磷酸钙、卵磷脂为唯一磷源检测菌株T23、T22、G30对难溶性磷的转化利用潜力,用电感耦合等离子发射光谱法(inductively coupled plasma-atomic emission spectrometry, ICP-AES)检测有效磷含量;用透明圈法或显色法分析菌株T23、T22、G30主要生理生化特性。【结果】菌株T23、T22、G30对茄镰孢(Fusarium solani)的平板拮抗率分别为77%、74%、48%;对齐整小核菌(Sclerotium rolfsii)的拮抗率分别为80%、67%、24%;对灰葡萄孢(Botrytis cinerea)的拮抗率分别为93%、62%、64%;菌株T22、G30基因组中均不携带胶毒素合成基因簇,培养液中均未检测到胶毒素;菌株T23培养液提取物对齐整小核菌、灰葡萄孢的抑菌率分别为40%、65%;温室接种结果表明,在齐整小核菌胁迫下,T23可显著提高花生成苗率,达68%;在灰葡萄孢胁迫下,菌株T23可使月季延迟16 d发病;菌株T23、T22可以产生β-1,3-葡聚糖酶;菌株T23、T22、G30可对磷酸钙进行转化利用。【结论】通过比较分析,我们对菌株T23的防病促生效果及生理生化特性有了进一步了解。菌株T23、T22、G30在植物病原真菌拮抗、解磷效果方面各具特点及优势,菌株T23通过产生抑菌性天然产物来拮抗病原真菌,这为真菌源生物农药的开发提供了重要的来源。在促生方面,菌株T23的无机磷转化机制有待进一步研究。

    Abstract:

    [Background] Trichoderma sp. is an important biocontrol microorganism. Comparing the biological characteristics of different strains can provide information for multi-function biocontrol agent development. [Objective] To figure out the biological function differences among different strains by comparing and analyzing the preventive effects of Trichoderma virens T23 and the other two Trichoderma harzianum strains T22 and G30 and their biological characteristics. [Methods] Plate antagonism test was employed to compare the antagonistic effects of strains T23, T22, and G30 on plant pathogenic fungi. Gliotoxin was extracted from culture solution of strains T23, T22, and G30 by ethyl acetate extraction method and tested by high-performance liquid chromatography (HPLC). The antagonistic effects of the extracts on plant pathogenic fungi were compared by the hole drilling method, and the effects of strains T23, T22, and G30 on disease prevention were verified by plant inoculation in the greenhouse experiments. The conversion and utilization potential of strains T23, T22, and G30 to insoluble phosphorus was determined by using calcium phosphate and lecithin as the only phosphorus sources, respectively, and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used for soluble phosphate detection. The main physiological and biochemical characteristics of strains T23, T22, and G30 were analyzed by the transparent ring method or chromogenic method. [Results] The plate antagonism rate of strains T23, T22, and G30 against Fusarium solani was 77%, 74%, and 48%, respectively, against Sclerotium rolfsii was 80%, 67%, and 24%, respectively, and against Botrytis cinerea was 93%, 62%, and 64% respectively. Neither strain T22 nor strain G30 carried gene clusters participating in gliotoxin biosynthesis, and no gliotoxin was detected in the culture solution of strains T22 and G30. The antibacterial rate of strain T23 extracts against S. rolfsii and B. cinerea was 40% and 65%, respectively. In the greenhouse experiment, strain T23 improved the emergence percentage (68%) of peanut seedlings under S. rolfsii stress and delayed the onset of disease in Rosa chinensis Jacq. for 16 days under B. cinerea stress. Strains T23 and T22 produced β-1,3-glucanase. Strains T23, T22, and G30 all possessed the ability to transform and utilize calcium phosphate. [Conclusion] Through comparative analysis, we have a further understanding of the disease prevention and growth-promoting effect of strain T23 and its physiological and biochemical characteristics. Strains T23, T22, and G30 have their characteristics and advantages in fungi antagonism and phosphorus solubilization. Strain T23 antagonizes pathogenic fungi by producing bacteriostatic natural products, which provides an important source for the development of fungus-derived biopesticides. In terms of growth promotion, the inorganic phosphorus solution mechanism of strain T23 needs to be further studied.

    参考文献
    [1] HOWELL CR. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases[J]. Phytopathology, 2006, 96(2):178-180.
    [2] TOMAH AA, ALAMER ISA, LI B, ZHANG JZ. A new species of Trichoderma and gliotoxin role:a new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper[J]. Biological Control, 2020, 145:104261.
    [3] MUKHERJEE PK, HORWITZ BA, HERRERA- ESTRELLA A, SCHMOLL M, KENERLEY CM. Trichoderma research in the genome era[J]. Annual Review of Phytopathology, 2013, 51:105-129.
    [4] ESCUDERO-LEYVA E, ALFARO-VARGAS P, MUÑOZ-ARRIETA R, CHARPENTIER-ALFARO C, GRANADOS-MONTERO MDM, VALVERDE- MADRIGAL KS, PÉEacute;REZ-VILLANUEVA M, MÉNDEZ- RIVERA M, RODRÍGUEZ-RODRÍGUEZ CE, CHAVERRI P, MORA-VILLALOBOS JA. Tolerance and biological removal of fungicides by Trichoderma species isolated from the endosphere of wild Rubiaceae plants[J]. Frontiers in Agronomy, 2022, 3:772170.
    [5] VITTI A, PELLEGRINI E, NALI C, LOVELLI S, SOFO A, VALERIO M, SCOPA A, NUZZACI M. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus[J]. Frontiers in Plant Science, 2016, 7:1520.
    [6] MUKHOPADHYAY R KUMAR D. Trichoderma:a beneficial antifungal agent and insights into its mechanism of biocontrol potential[J]. Egyptian Journal of Biological Pest Control, 2020, 30:133.
    [7] 李作森, 何月秋, 夏贤仁. 5个木霉菌株的抑菌谱及部分生物学特性[J]. 云南农业大学学报, 2004, 19(3):267-271. LI ZS, HE YQ, XIA XR. Inhibitory spectrum and partial biological traits of five Trichoderma isolates[J]. Journal of Yunnan Agricultural University, 2004, 19(3):267-271(in Chinese).
    [8] HIRPARA DG, GAJERA HP, HIRPARA HZ, GOLAKIYA BA. Antipathy of Trichoderma against Sclerotium rolfsii sacc.:evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists[J]. Journal of Molecular Microbiology and Biotechnology, 2017, 27(1):22-28.
    [9] EZIASHI EI, UMA NU, ADEKUNLE AA, AIREDE CE. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium[J]. African Journal of Biotechnology, 2006, 5(9):703-706.
    [10] MUKHERJEE PK, HORWITZ BA, KENERLEY CM. Secondary metabolism in Trichoderma:a genomic perspective[J]. Microbiology (Reading, England), 2012, 158(Pt 1):35-45.
    [11] BRIAN PW. The use of antibiotics for control of plant diseases caused by bacteria and fungi[J]. Journal of Applied Bacteriology, 1954, 17(1):142-151.
    [12] VINALE F, SIVASITHAMPARAM K, GHISALBERTI EL, MARRA R, BARBETTI MJ, LI H, WOO SL, LORITO M. A novel role for Trichoderma secondary metabolites in the interactions with plants[J]. Physiological and Molecular Plant Pathology, 2008, 72:80-86.
    [13] 陈秀玲, 李景富, 王傲雪. β-1,3-葡聚糖酶及其在蔬菜抗真菌病害基因工程中的应用[J]. 东北农业大学学报, 2008, 39(12):118-124. CHEN XL, LI JF, WANG AX. β-1,3-glucanase and its application to genetic engineering of vegetables resistant to fungal pathogens[J]. Journal of Northeast Agricultural University, 2008, 39(12):118-124(in Chinese).
    [14] HARMAN GE, LORITO M, LYNCH JM. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution[J]. Advances in Applied Microbiology, 2004, 56:313-330.
    [15] TRIPATHI P, SINGH PC, MISHRA A, CHAUHAN PS, DWIVEDI S, BAIS RT, TRIPATHI RD. Trichoderma:a potential bioremediator for environmental clean up[J]. Clean Technologies and Environmental Policy, 2013, 15:541-550.
    [16] KUMAR V, DWIVEDI SK. Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater[J]. Journal of Environmental Management, 2021, 277:111370.
    [17] 李琼芳, 曾华兰, 叶鹏盛, 何炼, 谭永久. 哈茨木霉(Trichoerma harzianum) T23生防菌筛选及防治中药材根腐病的研究[J]. 西南大学学报(自然科学版), 2007, 29(11):119-122. LI QF, ZENG HL, YE PS, HE L, TAN YJ. Selection of Trichoderma harzianum T23 as a biocontrol agent and its application in root rot control in medicinal herbs[J]. Journal of Southwest University:Natural Science Edition, 2007, 29(11):119-122(in Chinese).
    [18] 陈丹梅. 产酶溶杆菌新株Lysobacter enzymogenes LE16的促生防病作用及机理[D]. 重庆:西南大学博士学位论文, 2020. CHEN DM. Growth-promoting and disease-preventing effects and mechanism of a new strain of Lysobacter enzymogenes LE16[D]. Chongqing:Doctoral Dissertation of Southwest University, 2020(in Chinese).
    [19] 华丽霞, 何炼, 蒋秋平, 曾华兰, 叶鹏盛, 张敏, 刘朝辉, 韦树谷. 木霉菌T23胶毒素合成基因的生物信息学分析与克隆[J]. 基因组学与应用生物学, 2019, 38(3):1079-1086. HUA LX, HE L, JIANG QP, ZENG HL, YE PS, ZHANG M, LIU ZH, WEI SG. Bioinformatics analysis and cloning of Trichoderma T23 toxin synthesis gene[J]. Genomics and Applied Biology, 2019, 38(3):1079-1086(in Chinese).
    [20] GANG S, SHARMA S, SARAF M, BUCK M, SCHUMACHER J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the salkowski method[J]. Bio-protocol, 2019, 9(9):e3230.
    [21] 华丽霞, 孙佩, 蒋秋平, 曾华兰, 叶鹏盛, 何炼, 曾静, 王明娟, 张敏, 罗飞, 杨晓丫, 何晓敏, 刘勇. 绿木霉(Trichoderma virens) T23甲基转移酶基因gliN-T对胶毒素合成的调控研究[J]. 中国农业大学学报, 2020, 25(6):75-81. HUA LX, SUN P, JIANG QP, ZENG HL, YE PS, HE L, ZENG J, WANG MJ, ZHANG M, LUO F, YANG XY, HE XM, LIU Y. Regulation effect of methyltransferase gene gliN-T on the gliotoxin synthesis regulation in Trichoderma virens T23[J]. Journal of China Agricultural University, 2020, 25(6):75-81(in Chinese).
    [22] SOOD M, KAPOOR D, KUMAR V, SHETEIWY MS, RAMAKRISHNAN M, LANDI M, ARANITI F, SHARMA A. Trichoderma:the "secrets" of a multitalented biocontrol agent[J]. Plants, 2020, 9(6):762.
    [23] ZIN NA, BADALUDDIN NA. Biological function of Trichoderma spp. for agriculture applications[J]. Annals of Agricultural Sciences, 2020, 65(2):168-178.
    [24] HARMAN GE. Overview of mechanisms and use of Trichoderma spp.[J]. Phytopathology, 2006, 96:190-194.
    [25] ALINÇ T, CUSUMANO A, PERI E, TORTA L, COLAZZA S. Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity[J]. Journal of Chemical Ecology, 2021, 47(4/5):455-462.
    [26] 曾华兰, 叶鹏盛, 何炼, 李琼芳, 韦树谷. 木霉菌防治川芎根腐病的初步研究[J]. 西南农业学报, 2005, 18(4):427-430. ZENG HL, YE PS, HE L, LI QF, WEI SG. Preliminary study on the control effect of Trichoderma spp. to root rot disease in Ligusticum Chuanxiong[J]. Southwest China Journal of Agricultural Sciences, 2005, 18(4):427-430(in Chinese).
    [27] 曾华兰, 叶鹏盛, 李琼芳, 何炼, 岳福良. 哈茨木霉T23对花生的促生增产作用[J]. 云南农业大学学报, 2005, 20(1):145-146. ZENG HL, YE PS, LI QF, HE L, YUE FL. Effects of Trichoderma harzianum T23 on peanut yield[J]. Journal of Yunnan Agricultural University, 2005, 20(1):145-146(in Chinese).
    [28] 曾华兰, 叶鹏盛, 李琼芳, 江怀仲. 利用木霉防治丹参根腐病的研究[J]. 四川农业大学学报, 2003, 21(2):142-144. ZENG HL, YE PS, LI QF, JIANG HZ. Study on Dan-Shen root rot disease and its control by Trichoderma spp.[J]. Journal of Sichuan Agricultural University, 2003, 21(2):142-144(in Chinese).
    [29] SCHARF DH, BRAKHAGE AA, MUKHERJEE PK. Gliotoxin:bane or boon?[J]. Environmental Microbiology, 2016, 18(4):1096-1109.
    [30] HUA L, ZENG H, HE L, JIANG Q, YE P, LIU Y, SUN X, ZHANG M. Gliotoxin is an important secondary metabolite involved in suppression of Sclerotium rolfsii of Trichoderma virens T23[J]. Phytopathology, 2021, 111(10):1720-1725.
    [31] TAN YL, MA S, LEONHARD M, MOSER D, SCHNEIDER-STICKLER B. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185[J]. International Journal of Biological Macromolecules, 2018, 108:942-946.
    [32] JOO JH, HUSSEIN KA. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic Trichoderma spp.[J]. Frontiers in Plant Science, 2022, 13:897668.
    [33] YOU JQ, LI GQ, LI CH, ZHU LH, YANG HJ, SONG RH, GU WH. Biological control and plant growth promotion by volatile organic compounds of Trichoderma koningiopsis T-51[J]. Journal of Fungi (Basel, Switzerland), 2022, 8(2):131.
    [34] CONTRERAS-CORNEJO HA, MACÍAS-R ODRÍGUEZ L, CORTÉS-PENAGOS C, LÓPEZ-BUCIO J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149(3):1579-1592.
    [35] SARAVANAKUMAR K, ARASU VS, KATHIRESAN K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina[J]. Aquatic Botany, 2013, 104:101-105.
    [36] HARMAN GE, PETZOLDT R, COMIS A, CHEN J. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola[J]. Phytopathology, 2004, 94(2):147-153.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

华丽霞,何炼,蒋秋平,曾华兰,代顺冬,叶鹏盛,徐汉虹,林菲,孙小芳,赵馨怡. 三个木霉菌株防病促生效应[J]. 微生物学通报, 2023, 50(3): 1123-1135

复制
分享
文章指标
  • 点击次数:373
  • 下载次数: 1108
  • HTML阅读次数: 978
  • 引用次数: 0
历史
  • 收稿日期:2022-07-09
  • 录用日期:2022-11-03
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码