科微学术

微生物学通报

产木质纤维素降解酶真菌的筛选及产酶特性
作者:
基金项目:

黑龙江省重点研发计划(GA21B006)


Screening and enzymatic characterization of the fungal strains producing lignocellulose-degrading enzymes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】利用微生物处理秸秆引起研究者的广泛关注。【目的】筛选生长速度快、木质纤维素降解酶活性强的真菌菌株,用于植物秸秆降解和高效利用。【方法】从自然界采集的样品中分离纯化真菌菌株,利用PDA-愈创木酚和PDA-羧甲基纤维素钠平板初筛,再经过液体发酵检测漆酶酶活、羧甲基纤维素酶酶活及菌丝生长速率复筛目的菌株,通过内转录间隔区(internal transcribed spacer, ITS)测序法对目的菌株进行鉴定,对目的菌株产漆酶和羧甲基纤维素酶活力进行测定及酶学性质研究。【结果】从样品中分离纯化到18株真菌,通过初筛筛选出9株产木质纤维素降解酶真菌菌株,再经过复筛,筛选出一株产漆酶、羧甲基纤维素酶活力高、菌丝生长快的菌株M1,经过分子生物学鉴定M1为糙皮侧耳(Pleurotus ostreatus),其漆酶酶活为(243.59±1.11) U/mL,羧甲基纤维素酶酶活为(36.03±0.63) U/mL。在5 d的培养期内,菌丝生长速率为(9.43±0.32) mm/d。对菌株M1的发酵粗酶液的酶学性质进行了检测分析,结果表明,所产的漆酶在pH 5.0-6.5相对酶活为90%以上,在pH 5.5的介质中最为稳定,在低于55 ℃环境稳定性较高,相对酶活90%以上;该菌所产羧甲基纤维素酶在pH 5.5-6.5相对酶活为90%以上,在pH 6.0的介质中最为稳定,在低于60 ℃环境相对稳定性较高,相对酶活90%以上。【结论】本研究筛选到的菌株M1具有较高的漆酶和羧甲基纤维素酶活性,具有降解木质素和纤维素的潜力,为植物秸秆的生物降解提供了有效的菌种资源。

    Abstract:

    [Background] Microbial degradation of straw has attracted increasing attention of researchers. [Objective] To screen out the fungal strains with fast growth and strong activities of degrading lignin and cellulose for the efficient utilization of straw. [Methods] The fungal strains were isolated from the samples collected in the natural environments. PDA-guaiacol and PDA-carboxymethylcellulose were used for preliminary screening and then the activities of laccase and carboxymethyl cellulose (CMCase) of the selected strains were determined by liquid fermentation. The target strain was obtained by re-screening based on mycelial growth rate and identified by sequencing of internal transcribed spacer (ITS). Furthermore, the laccase and CMCase activites of the target strain was determined and the enzymatic properties were studied. [Results] A total of 18 strains of fungi were isolated from the samples, among which 9 strains producing lignocellulose-degrading enzymes were selected through preliminary screening. After re-screening, strain M1 with high activities of laccase and CMCase and fast mycelial growth was screened out as the target strain and identified as Pleurotus ostreatus. The strain had the laccase and CMCase activities of (243.59±1.11) U/mL and (36.03±0.63) U/mL, respectively, as well as the mycelial growth rate of (9.43±0.32) mm/d during the 5 days of culture. The relative activity of laccase produced by strain M1 was the most stable at pH 5.5 and over 90% in a pH range of 5.0 to 6.5 and below 55 ℃. The relative activity of CMCase produced by strain M1 was the most stable at pH 6.0 and over 90% in a pH range of 5.5 to 6.5 and below 60 ℃. [Conclusion] P. ostreatus M1 had high laccase and CMCase activities and the potential of degrading lignin and cellulose. This study provides a promising fungal strain for the biodegradation of straw.

    参考文献
    [1] 牛东泽. 白腐菌发酵对小麦秸秆营养价值及微生物多样性的影响[D]. 北京:中国农业大学博士学位论文, 2018. NIU DZ. Effects of incubation with white rot fungi on the nutritional value and microbial diversity of wheat straw[D]. Beijing:Doctoral Dissertation of China Agricultural University, 2018(in Chinese).
    [2] 赖姗姗, 陈玉青, 刘媛媛, 杨成凤, 刘斌, 赵超. 平菇不同状态下营养成分分析比较与品质评价[J]. 食品安全质量检测学报, 2018, 9(7):1619-1622. LAI SS, CHEN YQ, LIU YY, YANG CF, LIU B, ZHAO C. Analysis comparison and quality evaluation of nutritional components of Pleurotus ostreatus under different conditions[J]. Journal of Food Safety & Quality, 2018, 9(7):1619-1622(in Chinese).
    [3] 范寰, 梁军峰, 赵润, 张金凤, 张洪生. 白腐真菌在木质素微生物降解中的作用[J]. 天津农业科学, 2009, 15(5):19-22. FAN H, LIANG JF, ZHAO R, ZHANG JF, ZHANG HS. Role of white rot fungi in microbial degradation of lignin[J]. Tianjin Agricultural Sciences, 2009, 15(5):19-22(in Chinese).
    [4] 宋安东, 梁振普, 周利霞, 陈刚, 裴红波, 汤建华. 平菇产木质素降解酶类研究[J]. 河南工业大学学报(自然科学版), 2005, 26(2):28-32, 35. SONG AD, LIANG ZP, ZHOU LX, CHEN G, PEI HB, TANG JH. Study on the lignocellulolytic enzymes produced by Pleurotus ostreatus[J]. Journal of Henan University of Technology (Natural Science Edition), 2005, 26(2):28-32, 35(in Chinese).
    [5] 朱子健, 高璠, 陈三凤. 蘑菇渣中纤维素分解菌的酶活力研究[J]. 黑龙江畜牧兽医, 2017(9):43-45, 292. ZHU ZJ, GAO F, CHEN SF. Study on cellulase activities of cellulose-degrading bacteria from mushroom residue[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(9):43-45, 292(in Chinese).
    [6] CHEN XL, YU J, ZHANG ZB, LU CH. Study on structure and thermal stability properties of cellulose fibers from rice straw[J]. Carbohydrate Polymers, 2011, 85(1):245-250.
    [7] TEN HR, TEUNISSEN PJ. Oxidative mechanisms involved in lignin degradation by white-rot fungi[J]. Chemical Reviews, 2001, 101(11):3397-3413.
    [8] CHANG AJ, FAN JY, WEN XH. Screening of fungi capable of highly selective degradation of lignin in rice straw[J]. International Biodeterioration & Biodegradation, 2012, 72:26-30.
    [9] 杭怡琼, 薛惠琴, 郁怀丹, 陈谊. 白腐真菌对稻草秸秆的降解及其有关酶活性的变化[J]. 菌物系统, 2001, 20(3):403-407. HANG YQ, XUE HQ, YU HD, CHEN Y. Rice straw degradation by white rot fungi and variance of activities of related enzymes[J]. Mycosystema, 2001, 20(3):403-407(in Chinese).
    [10] 黄茜, 黄凤洪, 江木兰, 万楚筠, 刘睿. 木质素降解菌的筛选及混合菌发酵降解秸秆的研究[J]. 中国生物工程杂志, 2008, 28(2):66-70. HUANG Q, HUANG FH, JIANG ML, WAN CY, LIU R. The selection of lignin-degrading fungus and the straw fermentation by mixed strains[J]. China Biotechnology, 2008, 28(2):66-70(in Chinese).
    [11] 中华人民共和国农业农村部. 饲料添加剂纤维素酶活力的测定分光光度法:NY/T 912—2020[S]. 北京:中国农业出版社, 2021-04-01. Ministry of Agriculture and Rural Affairs of the People's Republic of China. Determination of cellulase activity in feed additives-Spectrophotometry:NY/T 912—2020[S]. Beijing:China Agriculture Press, 2021-04-01(in Chinese).
    [12] 孙思琦, 瓮岳太, 邸雪颖, 刘雪峰, 杨光. 木质素降解真菌的筛选及其对森林地表可燃物的降解效果[J]. 中南林业科技大学学报, 2021, 41(1):29-36. SUN SQ, WENG YT, DI XY, LIU XF, YANG G. Screening of lignin-degrading fungi and their degradation effect of forest surface fuel[J]. Journal of Central South University of Forestry & Technology, 2021, 41(1):29-36(in Chinese).
    [13] 张芳芳, 张桐, 戴丹, 张振豪, 张波, 李玉. 高效木质素降解菌的筛选及其对玉米秸秆的降解效果[J]. 菌物学报, 2021, 40(7):1869-1880. ZHANG FF, ZHANG T, DAI D, ZHANG ZH, ZHANG B, LI Y. Screening of efficient lignin-degrading fungal strains and their degradation on cornstalk[J]. Mycosystema, 2021, 40(7):1869-1880(in Chinese).
    [14] 魏姣, 万学瑞, 吴润, 畅通, 马亚茹, 刘磊, 张小丽, 张天亮, 杨润霞, 贾晓蕊. 产纤维素酶真菌菌株的分离筛选及产酶条件优化[J]. 甘肃农业大学学报, 2016, 51(2):8-15. WEI J, WAN XR, WU R, CHANG T, MA YR, LIU L, ZHANG XL, ZHANG TL, YANG RX, JIA XR. Isolation and screening of fungi strains producing cellulase and optimization of conditions for enzyme production[J]. Journal of Gansu Agricultural University, 2016, 51(2):8-15(in Chinese).
    [15] 徐安民, 李力, 马森. 白腐菌木质素降解酶高产菌株的筛选[J]. 河南工业大学学报(自然科学版), 2020, 41(2):78-82, 89. XU AM, LI L, MA S. Screening of lignin degrading enzyme high-producing strain from white rot fungi[J]. Journal of Henan University of Technology (Natural Science Edition), 2020, 41(2):78-82, 89(in Chinese).
    [16] 赵翠敏, 杜芳, 邹亚杰, 胡清秀, 郑素月. 基于不同基质刺芹侧耳菌丝生长与木质素降解酶的相关性研究[J]. 中国食用菌, 2020, 39(11):109-114. ZHAO CM, DU F, ZOU YJ, HU QX, ZHENG SY. Study on the relationship between mycelial growth and lignin degrading enzymes of Pleurotus eryngii based on different substrates[J]. Edible Fungi of China, 2020, 39(11):109-114(in Chinese).
    [17] 王福玲. 木质素降解菌株的筛选及其与离子液体预处理生物质的研究[D]. 哈尔滨:东北农业大学硕士学位论文, 2018. WANG FL. The study of screening of lignin degrading strains and pretreatment of biomass by the degrading strain and ionic liquids[D]. Harbin:Masterʼs Thesis of Northeast Agricultural University, 2018(in Chinese).
    [18] 沈盟, 袁晔, 宋小亚, 王保君, 郑巧平, 王瑞森, 张敏, 姚祥坦. 6种林果树木屑的营养成分分析及其对食用菌生长的影响[J]. 上海农业学报, 2021, 37(4):74-80. SHEN M, YUAN Y, SONG XY, WANG BJ, ZHENG QP, WANG RS, ZHANG M, YAO XT. Analysis of nutrient composition of 6 kinds of forest and fruit trees sawdust and its effect on the growth of edible fungi[J]. Acta Agriculturae Shanghai, 2021, 37(4):74-80(in Chinese).
    [19] SCHOCH CL, SEIFERT KA, HUHNDORF S, ROBERT V, SPOUGE JL, LEVESQUE CA, CHEN W, CONSORTIUM FB, LIST FBCA. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6241-6246.
    [20] 张宗启, 吴天祥, 刘力萍. 天麻中香草醇对灰树花菌丝体生物量和胞外多糖合成的影响[J]. 食品科学技术学报, 2020, 38(6):62-68. ZHANG ZQ, WU TX, LIU LP. Effects of vanillyl alcohol of rhizoma gastrodiae on mycelial biomass and synthesis of exopolysaccharide by Grifola frondosa[J]. Journal of Food Science and Technology, 2020, 38(6):62-68(in Chinese).
    [21] 甄静, 王继雯, 谢宝恩, 李冠杰, 刘莹莹, 周伏忠, 陈国参. 一株纤维素降解真菌的筛选、鉴定及酶学性质分析[J]. 微生物学通报, 2011, 38(5):709-714. ZHEN J, WANG JW, XIE BE, LI GJ, LIU YY, ZHOU FZ, CHEN GC. Isolation, identification of a cellulase-producing strain and characterization of its cellulase-producing capability[J]. Microbiology China, 2011, 38(5):709-714(in Chinese).
    [22] 田嘉慧, 封佳丽, 卢俊桦, 毛林静, 胡著然, 王莹, 楚杰. 一色齿毛菌漆酶LacT-1的分离纯化与性质研究[J]. 生物技术通报, 2021, 37(8):186-194. TIAN JH, FENG JL, LU JH, MAO LJ, HU ZR, WANG Y, CHU J. Isolation, purification and characterization of laccase LacT-1 from Cerrena unicolor[J]. Biotechnology Bulletin, 2021, 37(8):186-194(in Chinese).
    [23] ERIKSSON KEL, BLANCHETTE RA, ANDER P. Microbial and Enzymatic Degradation of Wood and Wood Components[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1990.
    [24] 李红亚, 李术娜, 王树香, 王全, 薛茵茵, 朱宝成. 解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解[J]. 应用生态学报, 2015, 26(5):1404-1410. LI HY, LI SN, WANG SX, WANG Q, XUE YY, ZHU BC. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1404-1410(in Chinese).
    [25] 李灵灵, 王敬红, 赵铎, 刘嘉乐, 申贵男, 袁媛, 高亚梅, 晏磊, 魏丹, 王伟东. 木质素降解菌BYL-7的筛选及降解条件优化[J]. 微生物学通报, 2020, 47(12):4059-4071. LI LL, WANG JH, ZHAO D, LIU JL, SHEN GN, YUAN Y, GAO YM, YAN L, WEI D, WANG WD. Screening of lignin degrading strain BYL-7 and optimization of degradation conditions[J]. Microbiology China, 2020, 47(12):4059-4071(in Chinese).
    [26] 韩月颖, 张喜庆, 曲云鹏, 高云航. 一株低温木质素降解菌的筛选、产酶优化及酶学性质[J]. 微生物学通报, 2021, 48(10):3700-3713. HAN YY, ZHANG XQ, QU YP, GAO YH. Screening, enzyme-production optimization and enzymatic properties of a low-temperature lignin-degrading bacteria[J]. Microbiology China, 2021, 48(10):3700-3713(in Chinese).
    [27] 王强. 降解木质纤维素的侧耳属菌株的筛选及酶学特性研究[D]. 邯郸:河北工程大学硕士学位论文, 2019. WANG Q. Screening and enzymatic characterization of Pleurotus strains degrading lignocellulose[D]. Handan:Masterʼs Thesis of Hebei University of Engineering, 2019(in Chinese).
    [28] 李明华, 孟秀梅, 王成龙. 纤维素酶高产菌筛选鉴定及酶学性质初步研究[J]. 中国酿造, 2021, 40(8):134-138. LI MH, MENG XM, WANG CL. Screening and identification of high-producing cellulose strain and enzymatic property[J]. China Brewing, 2021, 40(8):134-138(in Chinese).
    [29] 张冬雪, 文亚雄, 罗志威, 郑双凤, 谭石勇. 纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析[J]. 江西农业学报, 2020, 32(1):72-76. ZHANG DX, WEN YX, LUO ZW, ZHENG SF, TAN SY. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw[J]. Acta Agriculturae Jiangxi, 2020, 32(1):72-76(in Chinese).
    [30] 孟建宇, 杨帆, 冀锦华, 郭慧琴, 陶羽. 大兴安岭森林土壤中纤维素降解真菌的分离及产酶条件优化[J]. 黑龙江畜牧兽医, 2020(17):108-111, 120, 171. MENG JY, YANG F, JI JH, GUO HQ, TAO Y. Isolation of cellulose-degrading fungi from soils in Da Hinggan forest and optimization of enzyme production conditions[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(17):108-111, 120, 171(in Chinese).
    [31] 张梦君, 邱晨浩, 柴立伟, 黄木柯, 赵嫣然, 黄艺. 高效降解纤维素低温真菌的筛选、鉴定及发酵优化[J]. 微生物学通报, 2019, 46(10):2494-2503. ZHANG MJ, QIU CH, CHAI LW, HUANG MK, ZHAO YR, HUANG Y. Screening, identification and fermentation optimization of cold-adapted fungi with high efficiency of cellulose degradation[J]. Microbiology China, 2019, 46(10):2494-2503(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白长胜,刘秋瑾,尹珺伊,王欢,田秋丰,邱景会,汤继龙,史同瑞. 产木质纤维素降解酶真菌的筛选及产酶特性[J]. 微生物学通报, 2023, 50(3): 1098-1110

复制
分享
文章指标
  • 点击次数:448
  • 下载次数: 1428
  • HTML阅读次数: 1085
  • 引用次数: 0
历史
  • 收稿日期:2022-07-07
  • 录用日期:2022-08-25
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码