科微学术

微生物学通报

土壤产铁载体细菌的筛选及其对铁氧化物的活化与利用
作者:
基金项目:

山东省农业科技资金(林业科技创新)项目(2019LY009);山东省高等学校青创科技支持计划(2019KJH001);浙江大学山东(临沂)现代农业研究院服务地方经济发展项目(ZDNY-2021-FWLY02003)


Screening of soil siderophore-producing bacteria and their activation and utilization of iron oxide
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】土壤中铁主要以难溶态铁氧化物的形式存在,有效性较低,产铁载体细菌对铁氧化物的活化是提高铁利用效率的有效途径。【目的】从林木土壤筛选产铁载体细菌,并观察菌株对难溶性铁氧化物的利用效应,可为土壤微生物资源开发及其在养分调控中的作用提供理论依据。【方法】通过CAS检测法从林木根系附近表层土壤中分离产铁载体细菌,借助生物培养实验分析温度和pH对微生物生长和铁载体产生的影响,通过振荡平衡实验,探究细菌产铁载体对铁氧化物的活化效应。【结果】通过CAS检测法从林木根系附近表层土壤中分离得到12株产铁载体细菌,16S rRNA基因扩增子测序初步鉴定结果显示筛选细菌均为假单胞菌属。选取铁载体产生能力和生长活性较高的两株细菌ARSB02和CNRSB01作为重点研究对象,结果显示,不同条件下CNRSB01的生物量和铁载体产量均高于菌株ARSB02,22 h时菌株ARSB02和CNRSB01的铁载体活性单位分别达到67.07%和84.60%。pH 5.0-8.0的范围内两株细菌可以保持较好的铁载体产生能力,菌株ARSB02和CNRSB01在pH 7.0时铁载体产生能力最强,铁载体活性单位分别达到38.98%和48.77%。铁载体产生最适温度为25-30 ℃,菌株ARSB02和CNRSB01在30 ℃时铁载体产生能力最强,铁载体活性单位分别达到42.35%和56.06%。在针铁矿悬液中ARSB02和CNRSB01均能较好地生长,菌株ARSB02在铁氧化物比例为0.03 g/L时生物量最高,OD420值为0.75,菌株CNRSB01在铁氧化物比例为0.015 g/L时生物量最高,OD420值为1.11。而且细菌铁载体对铁氧化物有一定的活化效应,144 h时菌株ARSB02和CNRSB01对针铁矿的活化量分别达到12.99 μmol/L和 16.50 μmol/L。【结论】从林木根系附近表层土壤中分离得到的产铁载体细菌均属于假单胞菌,产铁载体细菌对铁氧化物有一定的活化能力,研究结果在林木土壤微生物资源开发和应用中具有重要的意义。

    Abstract:

    [Background] Iron in soil mainly exists in the form of insoluble iron oxide with low availability. The activation of iron oxide by siderophore-producing bacteria is an effective way to improve the iron utilization efficiency. [Objective] To observe the utilization of insoluble iron oxide by the siderophore-producing bacterial strains isolated from woodland soil and provide a theoretical basis for the development of microbial resources and the research on its role in nutrient regulation. [Methods] Siderophore-producing bacteria were isolated from surface soil near the tree roots by CAS detection method. The effects of temperature and pH on the growth and siderophore production of the isolates were analyzed by plate culture method. The activation effect of siderophore-producing bacteria on iron oxide was explored via oscillation balance experiments. [Results] Twelve siderophore-producing bacterial strains were isolated from surface soil near the tree roots. The results from 16S rRNA gene amplicon sequencing showed that the isolates were Pseudomonas. We selected two strains ARSB02 and CNRSB01 and analyzed their siderophore production and growth. The biomass and siderophore production of CNRSB01 were higher than those of ARSB02 under different conditions. At the time point of 22 h, the siderophore activity of ARSB02 and CNRSB01 reached 67.07% and 84.60%, respectively. The two strains could maintain good siderophore production within the range of pH 5.0-8.0 and the strongest siderophore production capacity (38.98% and 48.77%, respectively) at pH 7.0. The strains showed good siderophore production performance at 25-30℃ and the strongest siderophore production capacity (42.35% and 56.06%, respectively) at 30 ℃. Both ARSB02 and CNRSB01 grew well in goethite suspension. Strain ARSB02 had the highest biomass (OD420value of 0.75) in the suspension with the iron oxide ratio of 0.03 g/L and strain CNRSB01 had the highest biomass (OD420 value of 1.11) in the suspension with the iron oxide ratio of 0.015 g/L. The siderophore produced by the two strains could activate goethite. At the time point of 144 h, the activation of goethite by ARSB02 and CNRSB01 reached 12.99 μmol/L and 16.50 μmol/L, respectively. [Conclusion] The siderophore-producing bacteria isolated from surface soil near the tree roots all belong to Pseudomonas and have the ability to activate iron oxide. The results are of significance for the development and application of microbial resources in woodland soil.

    参考文献
    [1] 朱慧明. 髙产铁载体菌株的筛选及其对不溶性铁化合物的利用[D]. 天津:天津科技大学硕士学位论文, 2014. ZHU HM. Isolation of high siderophore-producing bacteria and the utilization of insoluble iron compounds[D]. Tianjin:Masterʼs Thesis of Tianjin University of Science and Technology, 2014(in Chinese).
    [2] REICHARD PU, KRETZSCHMAR R, KRAEMER SM. Dissolution mechanisms of goethite in the presence of siderophores and organic acids[J]. Geochimica et Cosmochimica Acta, 2007, 71(23):5635-5650.
    [3] 李艳梅, 王琼瑶, 涂卫国, 崔永亮, 钟玘狄, 李俐珩, 陈强, 余秀梅. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报, 2017, 44(8):1882-1890. LI YM, WANG QY, TU WG, CUI YL, ZHONG QD, LI LH, CHEN Q, YU XM. Growth promoting activity of siderophore secreting bacteria for peanut plant under nickel stress[J]. Microbiology China, 2017, 44(8):1882-1890(in Chinese).
    [4] DUBBIN WE, LOUISE ANDER E. Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH[J]. Applied Geochemistry, 2003, 18(11):1751-1756.
    [5] 王东升, 王立立, 李取生, 周婷, 周雪芳, 高琼. 产铁载体菌对龙葵修复土壤Cd污染的促进效应[J]. 环境工程学报, 2018, 12(8):2311-2319. WANG DS, WANG LL, LI QS, ZHOU T, ZHOU XF, GAO Q. Enhancing effect of siderophore-producting bacteria on remediation of cadmium-contaminated soil by Solanum nigrum L.[J]. Chinese Journal of Environmental Engineering, 2018, 12(8):2311-2319(in Chinese).
    [6] 王亚军, 冯炬威, 李雅倩, 虞方伯. 高产铁载体菌Burkholderia vietnamiensis YQ9促生特性研究及其对重金属胁迫条件下种子萌发的影响[J]. 环境科学学报, 2022, 42(2):430-437. WANG YJ, FENG JW, LI YQ, YU FB. Studies on growth-promoting properties of an efficient siderophore producing bacterium, Burkholderia vietnamiensis YQ9, and its effects on seed germination under heavy metal stress[J]. Acta Scientiae Circumstantiae, 2022, 42(2):430-437(in Chinese).
    [7] GHOSH SK, BERA T, CHAKRABARTY AM. Microbial siderophore-a boon to agricultural sciences[J]. Biological Control, 2020, 144:104214.
    [8] ZHANG LM, ZENG Q, LIU X, CHEN P, GUO XX, MA LZ, DONG HL, HUANG Y. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals[J]. Chemical Geology, 2019, 525:390-399.
    [9] DEHNER CA, AWAYA JD, MAURICE PA, DUBOIS JL. Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina[J]. Applied and Environmental Microbiology, 2010, 76(7):2041-2048.
    [10] YOSHIDA T, HAYASHI KI, OHMOTO H. Dissolution of iron hydroxides by marine bacterial siderophore[J]. Chemical Geology, 2002, 184(1/2):1-9.
    [11] HERSMAN L, LLOYD T, SPOSITO G. Siderophore-promoted dissolution of hematite[J]. Geochimica et Cosmochimica Acta, 1995, 59(16):3327-3330.
    [12] 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3):453-460. WU CW, XIA JX, DUAN ZR. Review on detection methods of soil organic matter(SOM)[J]. Soils, 2015, 47(3):453-460(in Chinese).
    [13] 陈伟, 舒健虹, 陈莹, 曾庆飞, 王小利, 陆瑞霞, 付薇. 黑麦草根际铁载体产生菌WN-H3的分离鉴定及其产铁载体培养条件的优化[J]. 生物技术通报, 2016, 32(10):219-226. CHEN W, SHU JH, CHEN Y, ZENG QF, WANG XL, LU RX, FU W. Screening, identification and fermentation condition optimun of a siderophore-producing bacteria WN-H3 from rhizosphere of ryegrass[J]. Biotechnology Bulletin, 2016, 32(10):219-226(in Chinese).
    [14] 赵翔, 陈绍兴, 谢志雄, 沈萍. 高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究[J]. 微生物学报, 2006, 46(5):691-695. ZHAO X, CHEN SX, XIE ZX, SHEN P. Isolation, identification and over-siderophores production of Pseudomonas fluorescens sp-f[J]. Acta Microbiologica Sinica, 2006, 46(5):691-695(in Chinese).
    [15] 王娟, 廖水姣, 朱端卫, 任丽英, 周文兵, 丁家旺. 不同氧化物硼负载体吸附锰离子的特性研究[J]. 土壤学报, 2006, 43(5):749-755. WANG J, LIAO SJ, ZHU DW, REN LY, ZHOU WB, DING JW. Mn2+ adsorption characteristics of different B-loaded oxides[J]. Acta Pedologica Sinica, 2006, 43(5):749-755(in Chinese).
    [16] SCHALK IJ, RIGOUIN C, GODET J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization[J]. Environmental Microbiology, 2020, 22(4):1447-1466.
    [17] BERTI AD, THOMAS MG. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a[J]. Journal of Bacteriology, 2009, 191(14):4594-4604.
    [18] 靳海洋, 王慧, 张燕辉, 胡天龙, 林志斌, 刘本娟, 蔺兴武, 谢祖彬. 稻田土壤固氮菌株的分离筛选及促生潜力[J]. 生物技术通报, 2020, 36(6):73-82. JIN HY, WANG H, ZHANG YH, HU TL, LIN ZB, LIU BJ, LIN XW, XIE ZB. Isolation, screening and plant growth-promoting potential of nitrogen-fixing strains from paddy soils[J]. Biotechnology Bulletin, 2020, 36(6):73-82(in Chinese).
    [19] 杨华, 胡展, 郭照辉, 肖蓉, 罗容珺, 付祖姣, 魏小武, 蔡长平, 王玉双. 水稻促生菌的筛选、鉴定及其促生效果[J]. 微生物学通报, 2022, 49(6):2088-2099. YANG H, HU Z, GUO ZH, XIAO R, LUO RJ, FU ZJ, WEI XW, CAI CP, WANG YS. Screening and identification of rice growth-promoting strains and their effects on rice growth[J]. Microbiology China, 2022, 49(6):2088-2099(in Chinese).
    [20] TRIPATHI K, KUMAR N, SINGH M, SINGH RK. Fungal Siderophore:Biosynthesis, Transport, Regulation, and Potential Applications[M]. Rhizosphere Microbes. Singapore:Springer Singapore, 2020:387-408.
    [21] CAVITE HJM, MACTAL AG, EVANGELISTA EV, CRUZ JA. Growth and yield response of upland rice to application of plant growth-promoting rhizobacteria[J]. Journal of Plant Growth Regulation, 2021, 40(2):494-508.
    [22] 杨妍, 龙云川, 蒋娟, 景兆鹏, 周少奇. 西双版纳保护区植物根际细菌的筛选及其促生能力研究[J]. 微生物学通报, 2019, 46(11):2877-2885. YANG Y, LONG YC, JIANG J, JING ZP, ZHOU SQ. Screening of plant-growth promoting rhizosphere actinomycetes in Xishuangbanna Reserve[J]. Microbiology China, 2019, 46(11):2877-2885(in Chinese).
    [23] MANWAR AV, KHANDELWAL SR, CHAUDHARI BL, MEYER JM, CHINCHOLKAR SB. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi[J]. Applied Biochemistry and Biotechnology, 2004, 118(1):243-251.
    [24] 许佳露, 张平, 李美芳, 廖柏寒, 彭佩钦, 李靖, 梅金星. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报, 2022, 49(3):1004-1016. XU JL, ZHANG P, LI MF, LIAO BH, PENG PQ, LI J, MEI JX. Isolation, culture condition optimization, and preliminary application of siderophore-producing strains[J]. Microbiology China, 2022, 49(3):1004-1016(in Chinese).
    [25] 陈绍兴. 假单胞菌SPF-1产铁载体条件及其铁载体性质研究[D]. 武汉:武汉大学硕士学位论文, 2005. CHEN SX. Analysis of the biosynthesis conditions and characteristics of siderophores from Pseudomonas sp. SPF-1[D]. Wuhan:Masterʼs Thesis of Wuhan University, 2005(in Chinese).
    [26] REVESZ E, FORTIN D, PAKTUNC D. Reductive dissolution of arsenical ferrihydrite by bacteria[J]. Applied Geochemistry, 2016, 66:129-139.
    [27] FERRET C, STERCKEMAN T, CORNU JY, GANGLOFF S, SCHALK IJ, GEOFFROY VA. Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas[J]. Environmental Microbiology Reports, 2014, 6(5):459-467.
    [28] DAVID SR, IHIAWAKRIM D, REGIS R, GEOFFROY VA. Iron removal from raw asbestos by siderophores-producing Pseudomonas[J]. Journal of Hazardous Materials, 2020, 385:121563.
    [29] KIMURA T, FUKUTANI S, IKEGAMI M, SAKAMOTO F, KOZAI N, GRAMBOW B, YONEDA M. Effect of bacterial siderophore on cesium dissolution from biotite[J]. Chemosphere, 2021, 276:130121.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

葛淼淼,薄永琳,刘宸,刘方春,解秀祥,董玉良,任丽英. 土壤产铁载体细菌的筛选及其对铁氧化物的活化与利用[J]. 微生物学通报, 2023, 50(3): 1062-1072

复制
分享
文章指标
  • 点击次数:572
  • 下载次数: 1358
  • HTML阅读次数: 1144
  • 引用次数: 0
历史
  • 收稿日期:2022-07-11
  • 录用日期:2022-09-16
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码