科微学术

微生物学通报

四川黄龙钙华沉积区附生藻垫生物与水环境因子相关性分析
作者:
基金项目:

国家重点研发计划(2020YFE0203200);国家自然科学基金(U21A2016,41877288);自然资源部岩溶生态系统与石漠化治理重点实验室开放课题(YRSW2021634)


Analysis of epiphytic algal mats and the correlation with aquatic environmental factors in Huanglong travertine area, Sichuan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】近年来,四川省黄龙风景区钙华沉积地貌上藻垫大面积滋生,厚度达3-5 cm,严重影响了钙华的持续沉积及欣赏价值。【目的】为有效控制藻类过度生长,并提出相关治理方法措施,需要对藻垫的结构特征及滋生原因进行深入分析。【方法】利用PE-250高通量测序平台对黄龙钙华沉积区典型附生藻垫剖面的不同层次进行真核物种组成分析,同时通过场发射扫描电子显微镜对其微观形貌进行表征,并且对藻垫的生长厚度与水环境参数进行了相关性分析。【结果】藻垫内的真核生物有400种左右,优势藻类主要为硅藻门(Diatomea)、轮虫动物门(Rotifera)和链型植物门(Streptophyta),硅藻门主要为桥弯藻属(Cymbella)。非度量多维尺度分析(non-metric multidimensional scaling, NMDS)统计和聚类分析表明,藻垫的中层和底层真核物种组成具有较高的相似性。场发射扫描电子显微镜的结果显示,硅藻主要分布在藻垫上层,中层主要为丝状藻类,底层为钙华颗粒填充在丝状藻构成的网状结构中。水质参数与藻垫生长的相关性分析表明,藻垫厚度主要与水体中的总氮(total nitrogen, TN)、总磷(total phosphorous, TP)和溶解氧(dissolved oxygen, DO)呈正相关(p<0.05)。【结论】黄龙钙华附生藻垫物种组成较为丰富,但在门水平上较为简单,具有物种组成及微观结构上的分层特性,水体营养化可能是促进藻垫生长的重要原因之一。本研究结果可为黄龙景区藻类滋生治理提供理论基础及依据。

    Abstract:

    [Background] In recent years, Huanglong travertine landscape has seen large-scale growth of algal mats with thickness of 3–5 cm, posing a threat to the travertine deposition and affecting the ornamental value of the landscape. [Objective] To dissect the structure of the algal mats and the reasons for the large-scale growth, thereby to control the growth of algae, and to propose management methods. [Methods] The composition of eukaryotic species in different layers of typical epiphytic algal mats in the Huanglong travertine area was analyzed based on PE-250. Their morphology was characterized via the field emission scanning electron microscope, and the correlation between the thickness of algal mats and water environment parameters was examined. [Results] The algal mats were home to about 400 species of eukaryotes, with the dominant algae of Diatomea (mainly Cymbella), Rotifera, and Streptophyta. Non-metric multidimensional scaling (NMDS) analysis and clustering analysis showed that the composition of eukaryotic species in the middle layer of the algal mats was highly similar to that in the lower layer. Diatoms dominated the upper layer, and the middle layer was mainly composed of filamentous algae. For the lower layer, travertine particles were seen in the reticular structure composed of filamentous algae. The thickness of algal mats was mainly in positive correlation with the total nitrogen (TN), total phosphorus (TP), and dissolved oxygen (DO) in the water (p<0.05). [Conclusion] The algal mats boast abundant species in a few phyla. The three layers of the mat are distinct from each other in species composition and microstructure and water eutrophication can explain the rapid growth of algal mats. This study lays a theoretical basis for the management of algal blooms in Huanglong Scenic and Historic Interest Area.

    参考文献
    [1] ZHANG JL, WANG HJ, LIU ZH, AN DJ, DREYBRODT W. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China-a world's heritage site[J]. Applied Geochemistry, 2012, 27:211-222.
    [2] 张金流, 王海静, 董立, 赵德猛. 世界遗产:四川黄龙钙华景观退化现象、原因及保护对策分析[J]. 地球学报, 2012, 33(1):111-120. ZHANG JL, WANG HJ, DONG L, ZHAO DM. An analysis of travertine landscape degradation in Huanglong ravine of Sichuan, a world's heritage site, and its causes and protection countermesures[J]. Acta Geoscientica Sinica, 2012, 33(1):111-120(in Chinese).
    [3] TAKEUCHI N, KOHSHIMA S, SEKO K. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier:a granular algal mat growing on the glacier[J]. Arctic, Antarctic, and Alpine Research, 2001, 33(2):115-122.
    [4] RIPPIN M, PICHRTOVÁ M, ARC E, KRANNER I, BECKER B, HOLZINGER A. Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (High Arctic)[J]. Environmental Microbiology, 2019, 21(11):4283-4299.
    [5] ROMANO I, GIORDANO A, LAMA L, NICOLAUS B, GAMBACORTA A. Planococcus rifietensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy)[J]. Systematic and Applied Microbiology, 2003, 26(3):357-366.
    [6] ZEDLER J. Salt marsh algal mat composition:spatial and temporal comparisons[J]. Bulletin, Southern California Academy of Sciences, 1982, 81:41-50.
    [7] BOTHWELL M L, SPAULDING S A. KIRKWOOD A E, JACKSON L J, MCCAULEY E. Didymosphenia geminata distribution and bloom formation along the south-eastern slopes of the Canadian Rockies[J]. On Didymosphenia geminata, 2005:22.
    [8] PIKOSZ M, MESSYASZ B, GĄBKA M. Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland[J]. Ecological Indicators, 2017, 74:1-9.
    [9] STANCHEVA R, SHEATH RG, HALL JD. Systematics of the genus zygnema (zygnematophyceae, charophyta) from Californian watersheds1[J]. Journal of Phycology, 2012, 48(2):409-422.
    [10] HOLZINGER A, ALBERT A, AIGNER S, UHL J, SCHMITT-KOPPLIN P, TRUMHOVÁ K, PICHRTOVÁ M. Arctic, antarctic, and temperate green algae Zygnema spp. under UV-B stress:vegetative cells perform better than pre-akinetes[J]. Protoplasma, 2018, 255(4):1239-1252.
    [11] 邓远明. 九-黄景区典型人为与自然源碳氮磷贡献与钙华沉积特征研究[D]. 绵阳:西南科技大学硕士学位论文, 2020. DENG YM. Studies on the contributions of carbon, nitrogen and phosphorus from typical anthropogenic and natural sources and travertine deposition in Jiuzhai and Huanglong scenic area[D]. Mianyang:Masterʼs Thesis of Southwest University of Science and Technology, 2020(in Chinese).
    [12] 魏复盛. 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. WEI FS. Water and waste water monitoring and analysis method[M]. 4th ed. Beijing:China Environment Science Press, 2002(in Chinese).
    [13] 李培京. 扫描电镜生物样品制备与观察[J]. 现代科学仪器, 2008(3):124-125. LI PJ. Preparation and observation of biological sample by scanning electron microscope[J]. Modern Scientific Instruments, 2008(3):124-125(in Chinese).
    [14] LI B, ZHANG XX, GUO F, WU WM, ZHANG T. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis[J]. Water Research, 2013, 47(13):4207-4216.
    [15] SHANNON CE, WEAVER W. The Mathematical Theory of Communication[M]. Urbana:University of Illinois Press, 1949
    [16] KRUSKAL JB. Nonmetric multidimensional scaling:a numerical method[J]. Psychometrika, 1964, 29(2):115-129.
    [17] 李玉鑑, 徐立业. 不加权算术平均组对方法的改进及应用[J]. 北京工业大学学报, 2007, 33(12):1333-1339. LI YJ, XU LY. Improvement for unweighted pair group method with arithmetic mean and its application[J]. Journal of Beijing University of Technology, 2007, 33(12):1333-1339(in Chinese).
    [18] DEY I, BANERJEE S, BOSE R, PAL R. Spatiotemporal variations in the composition of algal mats in wastewater treatment ponds of tannery industry[J]. Environmental Monitoring and Assessment, 2021, 193(6):359.
    [19] JIMEL M, KVÍDEROVÁ J, ELSTER J. Annual cycle of mat-forming filamentous Alga Tribonem a cf. minus (Stramenopiles, Xanthophyceae) in hydro-terrestrial habitats in the high arctic revealed by multiparameter fluorescent staining[J]. Journal of Phycology, 2021, 57(3):780-796.
    [20] VADEBONCOEUR Y, MOORE MV, STEWART SD, CHANDRA S, ATKINS KS, BARON JS, BOUMA-GREGSON K, BROTHERS S, FRANCOEUR SN, GENZOLI L, HIGGINS SN, HILT S, KATONA LR, KELLY D. OLEKSY IA, OZERSKY T, POWER ME, ROBERTS D, SMITS AP, TIMOSHKIN OLEG, et al. Blue waters, green bottoms:benthic filamentous algal blooms are an emerging threat to clear lakes worldwide[J]. BioScience, 2021, 71(10):1011-1027.
    [21] BIGGS BJF, NIKORA VI, SNELDER TH. Linking scales of flow variability to lotic ecosystem structure and function[J]. River Research and Applications, 2005, 21(2/3):283-298.
    [22] BIGGS BJF, GORING DG, NIKORA VI. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form[J]. Journal of Phycology, 1998, 34(4):598-607.
    [23] PLEW DR, COOPER GG, CALLAGHAN FM. Turbulence-induced forces in a freshwater macrophyte canopy[J]. Water Resources Research, 2008, 44(2):187-197.
    [24] LARNED ST. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae[J]. Marine Biology, 1998, 132(3):409-421.
    [25] SUREN AM, SMART GM, SMITH RA, BROWN SLR. Drag coefficients of stream bryophytes:experimental determinations and ecological significance[J]. Freshwater Biology, 2000, 45(3):309-317.
    [26] LARNED ST, PACKMAN AI, PLEW DR, VOPEL K. Interactions between the mat-forming alga Didymosphenia geminataand its hydrodynamic environment[J]. Limnology and Oceanography:Fluids and Environments, 2011, 1(1):4-22.
    [27] EVA C, JÁN M. Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon[J]. Croatica Chemica Acta;, 2001, 74(1):135-145.
    [28] BRICKER SB, LONGSTAFF B, DENNISON W, JONES A, BOICOURT K, WICKS C, WOERNER J. Effects of nutrient enrichment in the nation's estuari, FOUKE BW. Study on characteristics and significances of algal mats travertine in Zhengyancai pool marble dam of Huanglong natural reserve[J]. Carsologica Sinica, 2021, 40(1):105-111(in Chinese).in freshwater ecosystems in Poland[J]. Oceanological and Hydrobiological Studies, 2016, 45(2):202-215.
    [30] KLEINTEICH J, GOLUBIC S, PESSI IS, VELÁZQUEZ D, STORME JY, DARCHAMBEAU F, BORGES AV, COMPÈRE P, RADTKE G, LEE SJ, JAVAUX EJ, WILMOTTE A. Cyanobacterial contribution to travertine deposition in the hoyoux river system, Belgium[J]. Microbial Ecology, 2017, 74(1):33-53.
    [31] SHIRAISHI F, MORIKAWA A, KUROSHIMA K, AMEKAWA S, YU TL, SHEN CC, KAKIZAKI Y, KANO A, ASADA J, BAHNIUK AM. Genesis and diagenesis of travertine, futamata hot spring, Japan[J]. Sedimentary Geology, 2020, 405:105706.
    [32] VALERIANI F, CROGNALE S, PROTANO C, GIANFRANCESCHI G, ORSINI M, VITALI M, SPICA VR. Metagenomic analysis of bacterial community in a travertine depositing hot spring[J]. The New Microbiologica, 2018, 41(2):126-135.
    [33] SASAKI M, TAKAGI A, SASAKI D, NAKAMURA A, ASAYAMA M. Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella[J]. Carbohydrate Polymers, 2021, 254:117252.
    [34] KUMAR D, KVÍDEROVÁ J, KAŠTÁNEK P, LUKAVSKÝ J. The green Alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light[J]. Engineering in Life Sciences, 2017, 17(9):1030-1038.
    [35] 王建萍, 李琼芳, 董发勤, 李骐言, 程祥. 3株常见细菌胞外氨基酸对方解石表面性质的影响[J]. 环境科学与技术, 2015, 38(2):1-6. WANG JP, LI QF, DONG FQ, LI QY, CHENG X. Surface properties effect of calcite caused by three common bacterial extracellular amino acids[J]. Environmental Science & Technology, 2015, 38(2):1-6(in Chinese).
    [36] 王龙, LATIF K, RIAZ M, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10):1005-1023. WANG L, LATIF K, RIAZ M, LIU XY. The genesis, classification, problems and prospects of microbial carbonates:Implications from the Cambrian carbonate of North China platform[J]. Advances in Earth Science, 2018, 33(10):1005-1023(in Chinese).
    [37] GREER HF, ZHOU WZ, GUO L, CÖLFEN H, DISTASO M. Reversed crystal growth of calcite in naturally occurring travertine crust[J]. Crystals, 2017, 7(2):36.
    [38] JONES B, PENG XT. Hot spring deposits on a cliff face:a case study from Jifei, Yunnan Province, China[J]. Sedimentary Geology, 2014, 302:1-28.
    [39] JONES B, PENG XT. Amorphous calcium carbonate associated with biofilms in hot spring deposits[J]. Sedimentary Geology, 2012, 269/270:58-68.
    [40] JONES B, PENG XT. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China[J]. Sedimentary Geology, 2016, 345:103-125.
    [41] JONES B, RENAUT RW. Modern travertine precipitation at lýsuhóll hot springs, SnÆfellnes, Iceland:Implications for calcite crystal growth[J]. Journal of Sedimentary Research, 2017, 87(11):1121-1142.
    [42] 王海静, 刘再华, 曾成, 刘香玲, 孙海龙, 安德军, 唐淑, 张清明. 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3):307-314. WANG HJ, LIU ZH, ZENG C, LIU XL, SUN HL, AN DJ, TANG S, ZHANG QM. Hydrochemical variations of Huanglong Spring and the stream in Huanglong Ravine, Sichuan Province[J]. Geochimica, 2009, 38(3):307-314(in Chinese).
    [43] VERGARA JJ, PEREZ-LLORENS JL, PERALTA G, HERNANDEZ I, NIELL FX. Seasonal variation of photosynthetic performance and light attenuation in ulva canopies from palmones river estuary1[J]. Journal of Phycology, 1997, 33(5):773-779.
    [44] 冯晨旭, 董发勤, 代群威, 霍婷婷, Belzile N. 黄龙钙华纹层石特征与成因分析[J]. 矿物学报, 2019, 39(1):55-63. FENG CX, DONG FQ, DAI QW, HUO TT, BELZILE N. Characteristics and genesis of lamina travertine at Huanglong in Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(1):55-63(in Chinese).
    [45] 宋韬, 代群威, 李琼芳, 董发勤, 崔杰, 安德军, 罗尧东, Bruce W. Fouke. 黄龙争艳彩池边石坝藻席钙华特性研究及意义[J]. 中国岩溶, 2021, 40(1):105-111. SONG T, DAI QW, LI QF, DONG FQ, CUI J, AN DJ, LUO YD
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵晓夏,李琼芳,代群威,孙庚,张强,车明轩,董鹏举,任亚珍. 四川黄龙钙华沉积区附生藻垫生物与水环境因子相关性分析[J]. 微生物学通报, 2023, 50(3): 924-937

复制
分享
文章指标
  • 点击次数:379
  • 下载次数: 1145
  • HTML阅读次数: 1099
  • 引用次数: 0
历史
  • 收稿日期:2022-06-14
  • 录用日期:2022-08-30
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码