科微学术

微生物学通报

涠洲岛2种造礁珊瑚共附生可培养潜在耐热细菌多样性
作者:
基金项目:

国家自然科学基金(42090041,42030502);广西壮族自治区自然科学基金(2018GXNSFAA281328,AD17129063,AA17204074)


Diversity of potential heat-tolerant bacteria associated with two species of scleractinian corals in Weizhou Island
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】珊瑚适应环境的能力与机体内共附生细菌有关,然而,这些细菌在珊瑚宿主适应环境变化过程中所起的作用尚不清楚。对珊瑚共附生细菌进行纯培养,探究其生物功能和生态作用,是解析珊瑚宿主环境适应机理的重要途径。【目的】研究热耐受性不同的2种造礁珊瑚共附生可培养潜在耐热细菌多样性和功能,为理解珊瑚适应环境的能力提供新的认识。【方法】从涠洲岛选取2种热耐受性差异显著的霜鹿角珊瑚(Acropora pruinosa)和丛生盔形珊瑚(Galaxea fascicularis)为研究对象,采用2216E、海水R2A和海水GYP这3种琼脂培养基,于32 ℃ (珊瑚热耐受阈值)培养条件下对珊瑚共附生潜在耐热细菌进行分离培养,对分离菌株进行16S rRNA基因测序和序列相似性分析。选取代表菌株进行热耐受性检验,并利用平板对峙法进行抗菌活性检测。【结果】 2种造礁珊瑚共附生可培养潜在耐热细菌的多样性存在显著差异。从热敏型的霜鹿角珊瑚中获得44株细菌,隶属于4个门22个属,其中弧菌属(Vibrio)、假交替单胞菌属(Pseudoalteromonas)和Tenacibaculum为优势属;从热耐受性强的丛生盔形珊瑚中获得28株细菌,隶属于3个门11个属,其中弧菌属、假交替单胞菌属和鲁杰氏菌属(Rugeria)为优势属。此外,分离菌株中有17株菌与16S rRNA基因序列相似性低于98.65%,可能代表潜在的新分类单元。细菌热耐受性试验研究中,在26-37 ℃温度范围内,细菌生长速率均在34 ℃时最大,温度高于大多数海洋细菌的最适生长温度和珊瑚白化阈值,表明分离获得的细菌具有一定的耐热性。来源于丛生盔形珊瑚的2株鲁杰氏菌对珊瑚潜在病原弧菌具有抑制作用,而来自霜鹿角珊瑚Tenacibaculum的3株细菌对弧菌的抑制作用不明显。【结论】2种造礁珊瑚共附生可培养潜在耐热细菌具有丰富的多样性,而且蕴含着不少潜在新类群。另外,条件致病菌弧菌作为优势类群,但来源于热耐受性强的珊瑚共附生细菌对其有一定的拮抗作用。因此,本研究推测珊瑚的耐热特性与体内共生细菌对致病菌的抑制作用有关。

    Abstract:

    [Background] The environmental resilience of scleractinian corals is related to the associated bacteria. However, it is unclear how these bacteria adapt to the environmental changes. Studying the biological and ecological roles of these bacteria isolated via pure culture method is a fundamental approach to decipher the environment adaptation mechanism of corals. [Objective] To study the diversity and function of the heat-tolerant bacteria associated with two species of corals and further provide new insights into the environmental resilience of scleractinian corals. [Methods] We used three media, 2216E, seawater GYP, and seawater R2A agar, to isolate the heat-tolerant bacteria associated with two coral species (Acropora pruinosa and Galaxea fascicularis) with significant differences in heat tolerance from Weizhou Island, Beibu Gulf at 32 ℃ (heat tolerance threshold of corals). The 16S rRNA gene sequencing and sequence similarity analysis were then performed for the isolated bacteria. Predominant strains were selected and tested for the heat tolerance, and their antibacterial activity was analyzed by the plate confrontation method. [Results] The diversity of the potential heat-tolerant bacteria showed significant difference between the two coral species. A total of 44 strains of potential heat-tolerant bacteria belonging to 22 genera of 4 phyla were isolated from A. pruinosa, among which Vibrio, Pseudoalteromonas, and Tenacibaculum were predominant. A total of 28 heat-tolerant bacterial strains belonging to 11 genera of 3 phyla were isolated from G. fascicularis, among which Vibrio, Pseudoalteromonas, and Rugeria were predominant. Among the isolated bacteria, 17 strains shared the 16S rRNA gene sequence similarity below 98.65%, which might be new taxa. The growth conditions of bacteria were studied at 26-37 ℃, which showed the optimal growth temperature was 34 ℃, higher than the optimal growth temperature of most marine bacteria and coral bleaching threshold, indicating that the isolated bacteria had potential heat resilience. Two strains of Rugeria had an inhibitory effect on Vibrio, a potential pathogen associated with coral diseases, and 3 strains of Tenacibaculum did not exert significantly inhibitory activity. [Conclusion] The diversity of bacteria associated with A. pruinosa and G. fascicularis is high and needs to be further researched. Although the opportunistic pathogen Vibrio was the predominant genus, the bacteria associated with G. fascicularis had an inhibitory effect on it. Based on the above results, we hypothesized that the heat resilience of scleractinian corals was related to the inhibitory effect of the coral-associated bacteria on pathogenic bacteria.

    参考文献
    [1] van OPPEN MJH, BLACKALL LL. Coral microbiome dynamics, functions and design in a changing world[J]. Nature Reviews Microbiology, 2019, 17(9):557-567.
    [2] 徐帅良. 滨珊瑚共附生细菌多样性及其纯培养研究[D]. 南宁:广西大学硕士学位论文, 2020. XU SL. Diversity of Porites associated bacteria and its pure culture study[D]. Nanning:Master's Thesis of Guangxi University, 2020(in Chinese).
    [3] ROSENBERG E, KOREN O, RESHEF L, EFRONY R, ZILBER-ROSENBERG I. The role of microorganisms in coral health, disease and evolution[J]. Nature Reviews Microbiology, 2007, 5(5):355-362.
    [4] PERNICE M, RAINA JB, RÄDECKER N, CÁRDENAS A, POGOREUTZ C, VOOLSTRA CR. Down to the bone:the role of overlooked endolithic microbiomes in reef coral health[J]. The ISME Journal, 2020, 14(2):325-334.
    [5] ROSENBERG E, KUSHMARO A, KRAMARSKY- WINTER E, BANIN E, YOSSI L. The role of microorganisms in coral bleaching[J]. The ISME Journal, 2009, 3(2):139-146.
    [6] ZIEGLER M, SENECA FO, YUM LK, PALUMBI SR, VOOLSTRA CR. Bacterial community dynamics are linked to patterns of coral heat tolerance[J]. Nature Communications, 2017, 8:14213.
    [7] QIN ZJ, YU KF, LIANG JY, YAO QC, CHEN B. Significant changes in microbial communities associated with reef corals in the southern South China Sea during the 2015/2016 global-scale coral bleaching event[J]. Journal of Geophysical Research:Oceans, 2020, 125(7):e2019JC015579.
    [8] YU XP, YU KF, LIAO ZH, CHEN B, DENG CQ, YU JY, YAO QC, QIN ZJ, LIANG JY. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea[J]. Science of the Total Environment, 2021, 792:148438.
    [9] ZIEGLER M, GRUPSTRA CGB, BARRETO MM, EATON M, BAOMAR J, ZUBIER K, AL-SOFYANI A, TURKI AJ, ORMOND R, VOOLSTRA CR. Coral bacterial community structure responds to environmental change in a host-specific manner[J]. Nature Communications, 2019, 10(1):3092.
    [10] 李淑, 余克服, 施祺, 陈天然, 赵美霞, 严宏强. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6):534-539. LI S, YU KF, SHI Q, CHEN TR, ZHAO MX, YAN HQ. Experimental study of stony coral response to the high temperature in luhuitou of Hainan Island[J]. Tropical Geography, 2008, 28(6):534-539(in Chinese).
    [11] EDWARDS AJ, CLARK S, ZAHIR H, RAJASURIYA A, NASEER A, RUBENS J. Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery[J]. Marine Pollution Bulletin, 2001, 42(1):7-15.
    [12] 骆雯雯, 梁甲元, 余克服, 邓传奇, 葛瑞琪, 苏宏飞, 王英辉. 涠洲岛两种石珊瑚在高温胁迫下共生细菌群落结构变化特征[J]. 广西科学, 2019, 26(3):299-307. LUO WW, LIANG JY, YU KF, DENG CQ, GE RQ, SU HF, WANG YH. Characteristics of symbiotic bacterial community structure changes in two species of stony corals in Weizhou Island under high temperature stress[J]. Guangxi Sciences, 2019, 26(3):299-307(in Chinese).
    [13] LIANG JY, YU KF, WANG YH, HUANG XY, HUANG W, QIN ZJ, PAN ZL, YAO QC, WANG WH, WU ZC. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress[J]. Frontiers in Microbiology, 2017, 8:979.
    [14] YU XP, YU KF, LIAO ZH, LIANG JY, DENG CQ, HUANG W, HUANG YH. Potential molecular traits underlying environmental tolerance of Pavona decussata and Acropora pruinosa in Weizhou Island, northern South China Sea[J]. Marine Pollution Bulletin, 2020, 156:111199.
    [15] NEAVE MJ, APPRILL A, FERRIER-PAGÈS C, VOOLSTRA CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas[J]. Applied Microbiology and Biotechnology, 2016, 100(19):8315-8324.
    [16] PANTOS O, BONGAERTS P, DENNIS PG, TYSON GW, HOEGH-GULDBERG O. Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix[J]. The ISME Journal, 2015, 9(9):1916-1927.
    [17] DING JY, SHIU JH, CHEN WM, CHIANG YR, TANG SL. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33(T) with its coral host[J]. Frontiers in Microbiology, 2016, 7:251.
    [18] SWEET M, VILLELA H, KELLER-COSTA T, COSTA R, ROMANO S, BOURNE DG, CÁRDENAS A, HUGGETT MJ, KERWIN AH, KUEK F, MEDINA M, MEYER JL, MÜLLER M, POLLOCK FJ, RAPPÉ MS, SERE M, SHARP KH, VOOLSTRA CR, ZACCARDI N, ZIEGLER M, et al. Insights into the cultured bacterial fraction of corals[J]. mSystems, 2021, 6(3):e0124920.
    [19] SHNIT-ORLAND M, SIVAN A, KUSHMARO A. Antibacterial activity of Pseudoalteromonas in the coral holobiont[J]. Microbial Ecology, 2012, 64(4):851-859.
    [20] STRYCHAR KB, COATES M, SAMMARCO PW. Loss of Symbiodinium from bleached Australian scleractinian corals (Acropora hyacinthus, Favites complanata and Porites solida)[J]. Marine and Freshwater Research, 2004, 55(2):135.
    [21] YU WJ, WANG WH, YU KF, WANG YH, HUANG XY, HUANG RY, LIAO ZH, XU SD, CHEN XY. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea[J]. Biodiversity and Conservation, 2019, 28(14):3925-3949.
    [22] 王文欢. 近30年来北部湾涠洲岛造礁石珊瑚群落演变及影响因素[D]. 南宁:广西大学硕士学位论文, 2017. WANG WH. Evolvement and influential factors of coral community over past three decases in Weizhou Island reef, Beibu Gulf[D]. Nanning:Master's Thesis of Guangxi University, 2017(in Chinese).
    [23] 汤超莲, 周雄, 郑兆勇, 莫少华, 唐旺先. 未来海平面上升对涠洲岛珊瑚礁的可能影响[J]. 热带地理, 2013, 33(2):119-123, 140. TANG CL, ZHOU X, ZHENG ZY, MO SH, TANG WX. Possible effects of sea level rise in the future on the coral reef in Weizhou Island[J]. Tropical Geography, 2013, 33(2):119-123, 140(in Chinese).
    [24] 蒋庆茹, 柯才焕, 虞晋晋, 赵晶. 杂色鲍肠道益生菌的分离和鉴定[J]. 厦门大学学报(自然科学版), 2012, 51(4):782-788. JIANG QR, KE CH, YU JJ, ZHAO J. Isolation and characterisation of putative probiotics from Haliotis diversicolour[J]. Journal of Xiamen University (Natural Science), 2012, 51(4):782-788(in Chinese).
    [25] KIM M, OH HS, PARK SC, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):346-351.
    [26] TINDALL BJ, ROSSELLÓ-MÓRA R, BUSSE HJ, LUDWIG W, KÄMPFER P. Notes on the characterization of prokaryote strains for taxonomic purposes[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 1):249-266.
    [27] 武志华, 李娜, 马秀枝, 董晔, 郭子文, 刘惠荣. 大兴安岭地区粘细菌资源的多样性及其生物活性[J]. 微生物学通报, 2018, 45(2):266-283. WU ZH, LI N, MA XZ, DONG Y, GUO ZW, LIU HR. Diversity and bioactivities of myxobacteria in Daxing'an mountains[J]. Microbiology China, 2018, 45(2):266-283(in Chinese).
    [28] 刘阳, 赖其良, 陈华, 王建宁, 余志伟, 王丽萍, 邵宗泽. 东山湾软珊瑚共附生可培养细菌的多样性和产酶活性鉴定[J]. 应用海洋学学报, 2013, 32(3):396-403. LIU Y, LAI QL, CHEN H, WANG JN, YU ZW, WANG LP, SHAO ZZ. Phylogenetic diversity analysis and enzyme activity identification of cultured symbiotic bacteria of soft coral in Dongshan Bay[J]. Journal of Applied Oceanography, 2013, 32(3):396-403(in Chinese).
    [29] AMANN R, LUDWIG W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology[J]. FEMS Microbiology Reviews, 2000, 24(5):555-565.
    [30] MIURA N, MOTONE K, TAKAGI T, ABURAYA S, WATANABE S, AOKI W, UEDA M. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-ependent pathogen Vibrio coralliilyticus[J]. Marine Biotechnology, 2019, 21(1):1-8.
    [31] RUA CPJ, TRINDADE-SILVA AE, APPOLINARIO LR, VENAS TM, GARCIA GD, CARVALHO LS, LIMA A, KRUGER R, PEREIRA RC, BERLINCK RGS, VALLE RAB, THOMPSON CC, THOMPSON F. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis[J]. PeerJ, 2014, 2:e419.
    [32] RITCHIE KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria[J]. Marine Ecology Progress Series, 2006, 322:1-14.
    [33] BEN-HAIM Y, ROSENBERG E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis[J]. Marine Biology, 2002, 141(1):47-55.
    [34] BEN-HAIM Y, ZICHERMAN-KEREN M, ROSENBERG E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus[J]. Applied and Environmental Microbiology, 2003, 69(7):4236-4242.
    [35] USHIJIMA B, SMITH A, AEBY GS, CALLAHAN SM. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata[J]. PLoS One, 2012, 7(10):e46717.
    [36] SMITH D, LEARY P, CRAGGS J, BYTHELL J, SWEET M. Microbial communities associated with healthy and white syndrome-affected Echinopora lamellosa in aquaria and experimental treatment with the antibiotic ampicillin[J]. PLoS One, 2015, 10(3):e0121780.
    [37] RESHEF L, KOREN O, LOYA Y, ZILBER-OSENBERG I, ROSENBERG E. The coral probiotic hypothesis[J]. Environmental Microbiology, 2006, 8(12):2068-2073.
    [38] SHNIT-ORLAND M, KUSHMARO A. Coral mucus- associated bacteria:a possible first line of defense[J]. FEMS Microbiology Ecology, 2009, 67(3):371-380.
    [39] 黄昕琦, 蔡中华, 林光辉, 周进. 群体感应信号对"藻-菌"关系的调节作用[J]. 应用与环境生物学报, 2016, 22(4):708-717. HUANG XQ, CAI ZH, LIN GH, ZHOU J. Quorum sensing modulating algae-bacteria interactions[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4):708-717(in Chinese).
    [40] NISSIMOV J, ROSENBERG E, MUNN CB. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica[J]. FEMS Microbiology Letters, 2009, 292(2):210-215.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈金妮,梁甲元,余克服,俞小鹏,葛瑞琪,覃良云,许勇前. 涠洲岛2种造礁珊瑚共附生可培养潜在耐热细菌多样性[J]. 微生物学通报, 2023, 50(3): 909-923

复制
分享
文章指标
  • 点击次数:412
  • 下载次数: 1242
  • HTML阅读次数: 755
  • 引用次数: 0
历史
  • 收稿日期:2022-04-06
  • 录用日期:2022-09-25
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码