科微学术

微生物学通报

IgA肾病与膜性肾病患者肠道微生物菌群结构分析
作者:
基金项目:

甘肃省自然科学基金(21JR7RA625,22JR5RA654)


Intestinal microflora changes in patients with immunoglobulin A nephropathy and membranous nephropathy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】越来越多的证据表明肠道失衡与免疫介导的疾病相关,但肠道菌群和免疫介导的肾脏疾病之间的关系仍不清楚。【目的】通过Illumina高通量测序方法对IgA肾病(immunoglobulin A nephropathy, IgAN)、膜性肾病(membranous nephropathy, MN)患者和健康人群的肠道菌群进行比较。【方法】回顾性选择2020年9月-2021年12月期间,在甘肃省人民医院肾内科行肾穿刺活检并诊断为IgAN及MN患者的新鲜粪便标本,分别编号为IgAN组和MN组,收集体检中心健康人群粪便标本作为健康对照组,每组样本为10例。采用高通量测序技术对粪便样本中所有细菌的16S rrna基因V3-V4区进行DNA测序,然后进行分类操作单元(operational taxonomic units, OTU)、物种分类、α多样性、β多样性等分析,比较3组之间的肠道菌群差异。【结果】与健康对照组相比,门水平上IgAN组的变形菌门(Proteobacteria)和放线菌门(Actinobacteria)比例明显增高,分别为18% vs. 4%和18.3% vs. 5%;属水平上IgAN组大肠杆菌-志贺氏菌和双歧杆菌属丰度显著增加(14.1% vs. 2.1%和17.5% vs. 4.7%),而粪杆菌属(11% vs. 20.5%)、拟杆菌属(8.0% vs. 21%)、巨单胞菌属(1.8% vs. 8.0%)丰度降低。与健康对照组相比,门水平上MN组的变形菌门丰度增加(20% vs. 4%);属水平上MN组的埃舍里奇-志贺氏菌(13.8% vs. 2.1%)丰度增加,而双歧杆菌属(3.2% vs. 4.7%)、粪杆菌属(18% vs. 20.5%)、拟杆菌属(14.3% vs. 21%)、巨单胞菌属(1% vs. 8%)丰度降低。α多样性分析结果显示,肾病组丰富度指数低于健康对照组,多样性指数高于健康对照组。通过相似性分析(analysis of similarities, ANOISM)发现IgAN组与健康对照组之间肠道菌群构成的差异具有统计学意义(R=0.19,P=0.013),MN患者和健康对照组肠道菌群构成存在差异,但结果不具有统计学意义(R=0.08, P=0.08)。线性判别分析(linear discriminant analysis, LDA)差异贡献分析发现,3组之间共有14个物种存在显著差异。【结论】IgAN和MN患者的肠道微生物特征与健康对照组不同。

    Abstract:

    [Background] There is increasing evidence that intestinal imbalance is associated with immune-mediated disease. However, the mechanistic link between intestinal flora and immune-mediated kidney disease remains unclear. [Objective] To compare the intestinal flora by using high throughput 16S ribosomal RNA (rRNA) gene sequencing between patients with immunoglobulin A nephropathy (IgAN) and membranous nephropathy (MN) and healthy people. [Methods] Fresh fecal samples from patients with IgAN and MN who underwent renal biopsy in the Department of Nephrology of Gansu Provincial Hospital from September 2020 to December 2021 were retrospectively selected and divided into an IgAN group and a MN group, and the fecal samples from healthy people in the physical examination center were collected as a healthy control group, with 10 cases in each group. The 16S rRNA gene V3−V4 region of all bacteria in fecal samples was sequenced by high-throughput sequencing technology, and then biodiversity analysis was performed, including operational taxonomic units (OTU) analysis, species classification analysis, alpha diversity analysis, beta diversity analysis, etc., to compare the intestinal flora differences among the three groups. [Results] As compared with the healthy control group, Proteobacteria and Actinobacteria at phylum level in the IgAN group were significantly increased (18% vs. 4% and 18.3% vs. 5%, respectively). The abundance of Escherichia-Shigella and Bifidobacterium at genus level was significantly higher in the IgAN group (14.1% vs. 2.1% and 17.5% vs. 4.7%, respectively), while the abundance of Faecalibacterium (11% vs. 20.5%), Bacteroides (8.0% vs. 21%), and Megomonas (1.8% vs. 8.0%) was significantly lower. The abundance of Proteobacteria at phylum level increased in the MN group as compared with the healthy control group (20% vs. 4%). At genus level, the abundance of Escherich-Shigella increased in the MN group (13.8% vs 2.1%), the abundance of Bifidobacteria (3.2% vs. 4.7%), Faecalibacterium (18% vs. 20.5%), Bacteroides (14.3% vs. 21%), and Megomonas (1% vs. 8%) decreased. Alpha diversity analysis showed that the richness index of the IgAN and MN groups was lower than that of the healthy control group, and the diversity index was higher than that of the healthy control group. Principal coordinates analysis (PCoA) showed statistically significant differences in the composition of intestinal flora between the IgAN group and the healthy control group (ANOISM, R=0.19, P=0.013). There were differences in the composition of intestinal flora between the MN group and the healthy control group, but the results were not statistically significant (ANOISM, R=0.08, P=0.08). Linear discriminant analysis (LDA) for differential contribution revealed that 14 species had significant differences among the three groups. [Conclusion] The intestinal microbiome characteristics of patients with IgAN and MN are different from those of healthy people.

    参考文献
    [1] SATO D, SUZUKI Y, KANO T, SUZUKI H, MATSUOKA J, YOKOI H, HORIKOSHI S, IKEDA K, TOMINO Y. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients[J]. Nephrology Dialysis Transplantation, 2012, 27(3):1090-1097.
    [2] PURCHIARONI F, TORTORA A, GABRIELLI M, BERTUCCI F, GIGANTE G, IANIRO G, OJETTI V, SCARPELLINI E, GASBARRINI A. The role of intestinal microbiota and the immune system[J]. European Review for Medical and Pharmacological Sciences, 2013, 17(3):323-333.
    [3] COPPO R. The gut-kidney axis in IgA nephropathy:role of microbiota and diet on genetic predisposition[J]. Pediatric Nephrology, 2018, 33(1):53-61.
    [4] 李明, 余学清. IgA肾病全基因组关联分析研究[J]. 中国实用内科杂志, 2014, 34(3):220-222. LI M, YU XQ. Genome-wide association study in IgA nephropathy[J]. Chinese Journal of Practical Internal Medicine, 2014, 34(3):220-222(in Chinese).
    [5] HERLITZ LC, BOMBACK AS, STOKES MB, RADHAKRISHNAN J, D'AGATI VD, MARKOWITZ GS. IgA nephropathy with minimal change disease[J]. Clinical Journal of the American Society of Nephrology:CJASN, 2014, 9(6):1033-1039.
    [6] XIE JY, KIRYLUK K, WANG WM, WANG ZH, GUO SM, SHEN PY, REN H, PAN XX, CHEN XN, ZHANG W, LI X, SHI H, LI YF, GHARVI AG, CHEN Nl. Predicting progression of IgA nephropathy:new clinical progression risk score[J]. PLoS One, 2012, 7(6):e38904.
    [7] COPPO R. The intestine-renal connection in IgA nephropathy[J]. Nephrology Dialysis Transplantation, 2015, 30(3):360-366.
    [8] BOBART SA, de VRIESE AS, PAWAR AS, ZAND L, SETHI S, GIESEN C, LIESKE JC, FERVENZA FC. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies[J]. Kidney International, 2019, 95(2):429-438.
    [9] AVERSHINA E, FRISLI T, RUDI K. de novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data[J]. Microbes and Environments, 2013, 28(2):211-216.
    [10] NOVAL RIVAS M, BURTON OT, WISE P, ZHANG YQ, HOBSON SA, GARCIA LLORET M, CHEHOUD C, KUCZYNSKI J, de SANTIS T, WARRINGTON J, HYDW ER, PETROSINO JF, GERBER GK, BRY L, OETTGEN HC, MAZMANIAN SK, CHATILA TA. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis[J]. The Journal of Allergy and Clinical Immunology, 2013, 131(1):201-212.
    [11] ANGELIS MD, MONTEMURNO E, PICCOLO M, VANNINI L, LAURIERO G, MARANZANO V, GOZZI G, SERRAZANETTI D, DALFINO G, GOBBETTI M, GESUALDO L. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN)[J]. PLoS One, 2014, 9(6):e99006.
    [12] GEIRNAERT A, CALATAYUD M, GROOTAERT C, LAUKENS D, DEVRIESE S, SMAGGHE G, de VOS M, BOON N, van de WIELE T. Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity[J]. Scientific Reports, 2017, 7:11450.
    [13] ZHAO JB, LIU P, WU Y, GUO PT, LIU L, MA N, LEVESQUE C, CHEN YQ, ZHAO JS, ZHANG J, MA X. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2018, 66(30):7995-8004.
    [14] RUSZKOWSKI J, LISOWSKA KA, PINDEL M, HELENIAK Z, DĘBSKA-ŚLIZIEŃ A, WITKOWSKI JM. T cells in IgA nephropathy:role in pathogenesis, clinical significance and potential therapeutic target[J]. Clinical and Experimental Nephrology, 2019, 23(3):291-303.
    [15] WU HW, TANG DE, ZHENG FP, LI SS, ZHANG XZ, YIN LH, LIU FN, DAI Y. Identification of a novel interplay between intestinal bacteria and metabolites in Chinese patients with IgA nephropathy via integrated microbiome and metabolome approaches[J]. Annals of Translational Medicine, 2021, 9(1):32.
    [16] TAO SB, LI LZ, MA L, FU P. fp511 understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls:an analysis of the gut microbiota composition[J]. Nephrology Dialysis Transplantation, 2019, 34(supplement_1):gfz106.FP511.
    [17] PASCAL V, POZUELO M, BORRUEL N, CASELLAS F, CAMPOS D, SANTIAGO A, MARTINEZ X, VARELA E, SARRABAYROUSE G, MACHIELS K, VERMEIRE S,SOKOL H,GUARNER F,MANICHANH C. A microbial signature for Crohn's disease[J]. Gut, 2017, 66(5):813-822.
    [18] CROXEN MA, LAW RJ, SCHOLZ R, KEENEY KM, WLODARSKA M, FINLAY BB. Recent advances in understanding enteric pathogenic Escherichia coli[J]. Clinical Microbiology Reviews, 2013, 26(4):822-880.
    [19] 胥振国, 蔡玉华, 刘修树, 范高福, 戴银. 双歧杆菌研究进展及应用前景[J]. 中国生物制品学杂志, 2017, 30(2):215-220. XU ZG, CAI YH, LIU XS, FAN GF, DAI Y. Research progress and application prospect of Bifidobacterium[J]. Chinese Journal of Biologicals, 2017, 30(2):215-220(in Chinese).
    [20] ESAIASSEN E, HJERDE E, CAVANAGH JP, SIMONSEN GS, KLINGENBERG C. Norwegian study group on invasive bifidobacterial infections. Bifidobacterium bacteremia:clinical characteristics and a genomic approach to assess pathogenicity[J]. Journal of Clinical Microbiology, 2017, 55(7):2234-2248.
    [21] FORBES JD, van DOMSELAAR G, BERNSTEIN CN. The gut microbiota in immune-mediated inflammatory diseases[J]. Frontiers in Microbiology, 2016, 7:1081.
    [22] SOKOL H, SEKSIK P, FURET JP, FIRMESSE O, NION-LARMURIER I, BEAUGERIE L, COSNES J, CORTHIER G, MARTEAU P, DORÉ J. Low counts of Faecalibacterium prausnitzii in colitis microbiota[J]. Inflammatory Bowel Diseases, 2009, 15(8):1183-1189.
    [23] TURNBAUGH PJ, BÄCKHED F, FULTON L, GORDON JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host & Microbe, 2008, 3(4):213-223.
    [24] LOUIS P, FLINT HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiology Letters, 2009, 294(1):1-8.
    [25] WEXLER HM. Bacteroides:the good, the bad, and the nitty-gritty[J]. Clinical Microbiology Reviews, 2007, 20(4):593-621.
    [26] DARNAUD M, FAIVRE J, MONIAUX N. Targeting gut flora to prevent progression of hepatocellular carcinoma[J]. Journal of Hepatology, 2013, 58(2):385-387.
    [27] de VADDER F, KOVATCHEVA-DATCHARY P, ZITOUN C, DUCHAMPT A, BÄCKHED F, MITHIEUX G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metabolism, 2016, 24(1):151-157.
    [28] CHEN SY, CHEN CH, HUANG YC, CHUANG HM, LO MM, TSAI FJ. Effect of IL-6 C-572G polymorphism on idiopathic membranous nephropathy risk in a Han Chinese population[J]. Renal Failure, 2010, 32(10):1172-1176.
    [29] HOOPER LV. Bacterial contributions to mammalian gut development[J]. Trends in Microbiology, 2004, 12(3):129-134.
    [30] SEARS CL. A dynamic partnership:celebrating our gut flora[J]. Anaerobe, 2005, 11(5):247-251.
    [31] ZHOU YT, ZHI FC. Lower level of Bacteroides in the gut microbiota is associated with inflammatory bowel disease:a meta-analysis[J]. BioMed Research International, 2016, 2016:5828959.
    [32] 唐余燕. 贺海东. 肠道菌群失调在IgA肾病发病机制中的研究进展[J]. 国际泌尿系统杂志, 2020, 40(5):951-954. TANG YY. HE HD. Research progress of intestinal microbiota dysregulation in the pathogenesis of IgA nephropathy[J]. International Journal of Urology and Nephrology, 2020, 40(5):951-954(in Chinese).
    [33] CHEMOUNY JM, GLEESON PJ, ABBAD L, LAURIERO G, BOEDEC E, le ROUX K, MONOT C, BREDEL M, BEX-COUDRAT J, SANNIER A,DAUGAS E,VRTOVSNIK F, GESUALDO L, LECLERC M, BERTHELOT L, BEN MKADDEM S,LEPAGE P, MONTEIRO RC. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice[J]. Nephrology Dialysis Transplantation, 2019, 34(7):1135-1144.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵娟,马志刚,黄文辉,李莹屏,李小丽,齐雪婷,钱睿. IgA肾病与膜性肾病患者肠道微生物菌群结构分析[J]. 微生物学通报, 2023, 50(2): 632-643

复制
分享
文章指标
  • 点击次数:398
  • 下载次数: 858
  • HTML阅读次数: 1281
  • 引用次数: 0
历史
  • 收稿日期:2022-05-16
  • 录用日期:2022-08-12
  • 在线发布日期: 2023-02-03
  • 出版日期: 2023-02-20
文章二维码