Abstract:[Background] Rhizosphere microorganisms directly or indirectly affect the growth, development, and quality of medicinal plants. They improve the physical and chemical properties of soil to increase the diversity of probiotics, promote the biocontrol of plant diseases and insect pests, and improve the plant yield and quality. [Objective] To explore the effects of soil supplementation with hot pepper stalks on the growth quality and rhizosphere bacterial community structure of Polygonatum kingianum. [Methods] The rhizosphere soil samples of P. kingianum were collected from the control field (CK, without any treatment), the field fertilized with decomposed hot pepper stalks (X treatment), and the field fertilized with commercial compound fertilizer (Y treatment). The growth quality of P. kingianum was evaluated, and the bacterial community structure in rhizosphere soil was studied by high-throughput sequencing. [Results] The growth quality of P. kingianum in X treatment was significantly better than that in CK and had no significant difference from that in Y treatment. The polysaccharide content and root activity in X treatment were 24.48% and 56.98%, respectively, higher than those in Y treatment. In addition, the organic matter and soil porosity were also higher in X treatment than in Y treatment. In the rhizosphere bacterial community, Proteobacteria had the highest relative abundance, which was 34.8% in CK, 34.6% in X treatment, and 41.3% in Y treatment, and its relative abundance in Y treatment was significantly higher than that in other treatments. Chloroflexi had the second highest relative abundance, being higher in X treatment (10.2%) than in CK (8.7%) and Y treatment (5.8%). X treatment had significantly higher relative abundance of Cyanobacteria than CK and significantly higher relative abundance of Gemmatimonadetes and Desulfobacteria than Y treatment. The ternary phase diagram (at the genus level) indicated that the genera with the highest relative abundance were Verrucomicrobium and Lysobacter in CK, JG30-KF-AS9 in X treatment, and Pseudomonas and Mitochondria in Y treatment. The α diversity indexes showed no significant difference among treatments. The redundancy analysis showed that organic matter and total porosity were the main factors affecting the changes of bacterial community in X treatment. The cluster of orthologous group (COG) annotation showed that X treatment significantly increased the COGs, with the number of specific COGs (81) significantly higher than that of CK (3) and Y treatment (7). [Conclusion] X treatment improved the growth quality of P. kingianum, changed the structure of rhizosphere bacterial community, and enriched beneficial microorganisms. This study is conducive to the exploration of new functional groups of microorganisms and the research on microorganism-mediated plant response to the environment and microbial synergy under specific environmental conditions. Meanwhile, it gives new insights into the cultivation of P. kingianum.