科微学术

微生物学通报

酸性土壤氨氧化微生物及其影响因素研究进展
作者:
基金项目:

国家自然科学基金(31760157);江西省教育厅项目(GJJ160627)


Ammonia-oxidizing microorganisms in acidic soil and their influencing factors: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    自然条件变化和人类活动不仅加剧了土壤酸化,扩大了酸性土壤面积,而且严重影响了土壤氮循环。氨氧化过程作为硝化作用的限速步骤,是全球氮循环的核心环节,受到国内外研究者的广泛关注。探究酸性土壤氨氧化作用及其功能微生物对完善氮循环机制和促进土壤养分循环具有重要意义。本文主要综述了土壤中氨氧化代谢途径,对比了氨氧化细菌(ammonia-oxidizing bacteria,AOB)、氨氧化古菌(ammonia-oxidizing archaea,AOA)和全程硝化菌(complete ammonia oxidizers,Comammox)对酸性土壤氨氧化作用的相对贡献,分析了微生物内源功能差异及pH、底物浓度等外部环境因素对氨氧化微生物丰度、活性和群落结构的影响,最后对氨氧化微生物研究进行了展望,以期为酸性土壤氨氧化作用研究和微生物修复技术应用与实践提供科学参考。

    Abstract:

    The changes of natural conditions and human activities have not only intensified soil acidification and expanded the area of acidic soil but also seriously affected soil nitrogen cycle. As a rate-limiting step of nitrification, ammonia oxidation is the core of the global nitrogen cycle, which has attracted extensive attention. Exploring ammonia oxidation in acidic soil and the involved functional microorganisms is of great significance for deciphering the nitrogen cycle mechanism and promoting soil nutrient cycling. This paper summarized the mechanisms of ammonia oxidation in soil and compared the relative contributions of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and complete ammonia oxidizers (Comammox) to ammonia oxidation in acidic soil. Then, we analyzed the effects of microbial endogenous function differences and environmental factors such as pH and substrate concentration on the abundance, activity, and community structure of ammonia-oxidizing microorganisms. Finally, the future studies about ammonia-oxidizing microorganisms were prospected. This paper is expected to provide scientific references for future research on ammonia oxidation in acidic soil, as well as the application and practice of microbial remediation.

    参考文献
    [1] 魏贤, 赵梦霖. 土壤酸化及酸性土壤改良措施[J]. 农业科技与信息, 2016(35):88-89. WEI X, ZHAO ML. Soil acidification and acid soil improvement measures[J]. Agricultural Science-Technology and Information, 2016(35):88-89 (in Chinese).
    [2] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6):1900-1908. ZHANG LY, ZHAO XQ, SHEN RF. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6):1900-1908 (in Chinese).
    [3] 谢会雅, 陈舜尧, 张阳, 吕书记, 王青, 李迪秦, 祝利. 中国南方土壤酸化原因及土壤酸性改良技术研究进 展[J]. 湖南农业科学, 2021(2):104-107. XIE HY, ZHANG SY, ZHANG Y, LYV SJ, WANG Q, LI DQ, ZHU L. Research progress on causes of soil acidification & acid soil improvement technology in south China[J]. Hunan Agricultural Sciences, 2021(2):104-107 (in Chinese).
    [4] 张伟. 土壤颗粒表面电场对酸性土壤硝化作用的影 响[D]. 重庆:西南大学硕士学位论文, 2010. ZHANG W. Effect of soil surface electric field on nitrification in acid soil[D]. Chongqing:Master's Thesis of Southwest University, 2010 (in Chinese).
    [5] LIU JJ, LI C, MA WD, LIU W, WU WX. Molecular characterization of distinct fungal communities in the soil of a rare earth mining area[J]. Microbial Ecology, 2021.
    [6] 王梅, 蒋先军. 施用石灰与钙蒙脱石对酸性土壤硝化动力学过程的影响[J]. 农业资源与环境学报, 2017, 34(1):47-53. WANG M, JIANG XJ. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil[J]. Journal of Agricultural Resources and Environment, 2017, 34(1):47-53 (in Chinese).
    [7] 侯雪燕. 土壤pH对硝化作用和氨氧化微生物群落结构的影响[D]. 重庆:西南大学硕士学位论文, 2014. HOU XY. Effects of soil pH on nitrification and community structure of ammonia-oxidizing microorganisms[D]. Chongqing:Master's Thesis of Southwest University, 2014 (in Chinese).
    [8] HU HW, XU ZH, HE JZ. Ammonia-oxidizing archaea play a predominant role in acid soil nitrification[J]. Advances in Agronomy, 2014, 125:261-302.
    [9] SHEN JP, ZHANG LM, DI HJ, HE JZ. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J]. Frontiers in Microbiology, 2012, 3.
    [10] STEMPFHUBER B, ENGEL M, FISCHER D, NESKOVIC-PRIT G, WUBET T, SCHöNING I, GUBRY-RANGIN C, KUBLIK S, SCHLOTER-HAI B, RATTEI T, WELZL G, NICOL GW, SCHRUMPF M, BUSCOT F, PROSSER JI, SCHLOTER M. pH as a driver for ammonia-oxidizing archaea in forest soils[J]. Microbial Ecology, 2015, 69(4):879-883.
    [11] 全哲学. 追寻全程硝化菌之路:基因序列驱动的新功能微生物的发现[J]. 中国科学基金, 2018, 32(5):479-484. QUAN ZX. Seeking of complete nitrifiers:finding of novel functional microorganisms driven by gene sequence[J]. Bulletin of National Natural Science Foundation of China, 2018, 32(5):479-484 (in Chinese).
    [12] WANG F, LIANG XL, MA SH, LIU LZ, WANG JK. Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization[J]. Journal of Soils and Sediments, 2021, 21:1800-1814.
    [13] 王智慧, 蒋先军. 宏基因组技术研究泥岩母质发育的三种不同pH紫色土硝化微生物群落演变规律[J]. 微生物学报, 2021, 61(7):1933-1944. WANG ZH, JIANG XJ. Metagenomics-centric assembly of nitrifying communities in three pH-distinct soils with the same origin of parent material[J]. Acta Microbiologica Sinica, 2021, 61(7):1933-1944 (in Chinese).
    [14] LEHTOVIRTA-MORLEY LE, SAYAVEDRA-SOTO LA, GALLOIS N, SCHOUTEN S, STEIN LY, PROSSER JI, NICOL GW. Identifying potential mechanisms enabling acidophily in the ammonia-oxidizing archaeon "Candidatus Nitrosotalea devanaterra"[J]. Applied and Environmental Microbiology, 2016, 82(9):2608-2619.
    [15] 胡行伟. 酸性土壤中氨氧化微生物参与硝化作用的机理及其生态学特征[D]. 北京:中国科学院大学博士学位论文, 2013. HU HW. Microbial mechanisms of ammonia oxidation and ecological characteristics of ammonia oxidizers in acidic soils[D]. Beijing:Doctoral Dissertation of University of Chinese Academy of Sciences, 2013 (in Chinese).
    [16] 姬洪飞, 王颖. 分子生物学方法在环境微生物生态学中的应用研究进展[J]. 生态学报, 2016, 36(24):8234-8243. JI HF, WANG Y. Advances in molecular approach applications in microbial ecology studies[J]. Acta Ecologica Sinica, 2016, 36(24):8234-8243 (in Chinese).
    [17] 何晴, 王尚, 邓晔. 分子生物学技术在热泉地质微生物学研究中的应用[J]. 微生物学报, 2019, 59(6):996-1011. HE Q, WANG S, DENG Y. Molecular biological technologies applied in geo-microbiology of terrestrial geothermal environments[J]. Acta Microbiologica Sinica, 2019, 59(6):996-1011 (in Chinese).
    [18] 刘帅. 典型生境中氨氧化古菌(AOA)和氨氧化细菌(AOB)的微生物生态学研究[D]. 杭州:浙江大学博士学位论文, 2015. LIU S. Microbial ecology of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria(AOB) in typical ecosystems[D]. Hangzhou:Doctoral Dissertation of Zhejiang University, 2015 (in Chinese).
    [19] WALKER CB, de la TORRE JR, KLOTZ MG, URAKAWA H, PINEL N, ARP DJ, BROCHIER-ARMANET C, CHAIN PSG, CHAN PP, GOLLABGIR A, HEMP J, HüGLER M, KARR EA, KöNNEKE M, SHIN M, LAWTON TJ, LOWE T, MARTENS-HABBENA W, SAYAVEDRA-SOTO LA, LANG D, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences, 2010, 107(19):8818-8823.
    [20] TOLAR BB, HERRMANN J, BARGAR JR, van den BEDEM H, WAKATSUKI S, FRANCIS CA. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea[J]. Environmental Microbiology Reports, 2017, 9(5):484-491.
    [21] MARTENS-HABBENA W, QIN W, HORAK REA, URAKAWA H, SCHAUER AJ, MOFFETT JW, ARMBRUST EV, INGALLS AE, DEVOL AH, STAHL DA. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger[J]. Environmental Microbiology, 2015, 17(7):2261-2274.
    [22] STAHL DA, de la TORRE JR. Physiology and diversity of ammonia-oxidizing archaea[J]. Annual Review of Microbiology, 2012, 66:83-101.
    [23] CARANTO JD, LANCASTER KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences, 2017, 114(31):8217-8222.
    [24] STEIN LY. Insights into the physiology of ammonia-oxidizing microorganisms[J]. Current Opinion in Chemical Biology, 2019, 49:9-15.
    [25] REYES C, HODGSKISS LH, KEROU M, PRIBASNIG T, ABBY SS, BAYER B, KRAEMER SM, SCHLEPER C. Genome wide transcriptomic analysis of the soil ammonia oxidizing archaeon Nitrososphaera viennensis upon exposure to copper limitation[J]. The ISME Journal, 2020, 14(11):2659-2674.
    [26] VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO LA, SCHAUER A, BOTTOMLEY PJ, STAHL DA, ARP DJ. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea[J]. Proceedings of the National Academy of Sciences, 2013, 110(3):1006-1011.
    [27] LANCASTER KM, CARANTO JD, MAJER SH, SMITH MA. Alternative bioenergy:updates to and challenges in nitrification metalloenzymology[J]. Joule, 2018, 2(3):421-441.
    [28] 储成, 吴赵越, 黄欠如, 韩成, 钟文辉. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响[J]. 环境科学, 2020, 41(5):2468-2475. CHU C, WU ZY, HUANG QR, HAN C, ZHONG WH. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils[J]. Environmental Science, 2020, 41(5):2468-2475 (in Chinese).
    [29] LI H, WENG BS, HUANG FY, SU JQ, YANG XR. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in southern China[J]. Applied Microbiology and Biotechnology, 2015, 99(14):6113-6123.
    [30] KITS KD, SEDLACEK CJ, LEBEDEVA EV, HAN P, BULAEV A, PJEVAC P, DAEBELER A, ROMANO S, ALBERTSEN M, STEIN LY, DAIMS H, WAGNER M. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671):269-272.
    [31] 曹彦强, 王智慧, 莫永亮, 王梅, 蒋先军. 施肥和淹水管理对水稻土氨氧化微生物数量的影响[J]. 土壤学报, 2019, 56(4):1004-1011. CAO YQ, WANG ZH, MO YL, WANG M, JIANG XJ. Effects of fertilization and water management on abundance of ammoniaoxidizing microorganisms in paddy soils[J]. Acta Pedologica Sinica, 2019, 56(4):1004-1011 (in Chinese).
    [32] DAIMS H, LEBEDEVA EV, PJEVAC P, HAN P, HERBOLD C, ALBERTSEN M, JEHMLICH N, PALATINSZKY M, VIERHEILIG J, BULAEV A, KIRKEGAARD RH, von BERGEN M, RATTEI T, BENDINGER B, NIELSEN PH, WAGNER M. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
    [33] van KESSEL MAHJ, SPETH DR, ALBERTSEN M, NIELSEN PH, den CAMP HJMO, KARTAL B, JETTEN MSM, LüCKER S. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559.
    [34] PALOMO A, PEDERSEN AG, FOWLER SJ, DECHESNE A, SICHERITZ-PONTéN T, SMETS BF. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12(7):1779-1793.
    [35] 杨赛, 朱琳, 魏巍. 土壤生态系统硝化微生物研究进展[J]. 中国土壤与肥料, 2018(6):1-10. YANG S, ZHU L, WEI W. Research progress on nitrifying microorganisms of soil ecosystem[J]. Soil and Fertilizer Sciences in China, 2018(6):1-10 (in Chinese).
    [36] Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M, Daims H. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36):11371-11376.
    [37] Han S, Tan S, Wang AC, Chen WL, Huang QY. Deciphering belowground nitrifier assemblages with elevational soil sampling in a subtropical forest ecosystem (Mount Lu, China)[J]. FEMS Microbiology Ecology, 2020, 96(1).
    [38] Koch H, van Kessel MAHJ, Lücker S. Complete nitrification:insights into the ecophysiology of comammox Nitrospira[J]. Applied Microbiology and Biotechnology, 2019, 103(1):177-189.
    [39] Chua FJD, Sun FQ, Mukherjee M, Zhou Y. Comparison of nitrous oxide emission between a partial and full nitrification enriched ammonia-oxidising culture[J]. Chemosphere, 2019, 220:974-982.
    [40] Qin W, Zheng Y, Zhao F, Wang YL, Urakawa H, Martens-Habbena W, Liu HD, Huang XW, Zhang XX, Nakagawa T, Mende DR, Bollmann A, Wang BZ, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R, Virginia Armbrust E, Winkler MKH, et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea[J]. The ISME Journal, 2020, 14(10):2595-2609.
    [41] Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6):1067-1071.
    [42] Yin ZX, Bi XJ, Xu CL. Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater[J]. Archaea, 2018:8429145.
    [43] Zeng ZR, Chen HH, Yang H, Chen YF, Yang W, Feng X, Pei HY, Welander PV. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids[J]. Nature Communications, 2022, 13.
    [44] Villanueva L, Damsté JSS, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6):438-448.
    [45] Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea[J]. Nature Reviews Microbiology, 2007, 5(4):316-323.
    [46] 冯军, 李江海, 牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7):732-739. Feng J, Li JH, Niu XL. Research advances in hydrothermal vent microbial communities and its significance for geology[J]. Advances in Earth Science, 2005, 20(7):732-739 (in Chinese).
    [47] Bang C, Schmitz RA. Archaea:forgotten players in the microbiome[J]. Emerging Topics in Life Sciences, 2018, 2(4):459-468.
    [48] 张月明, 乔建军. 嗜酸菌耐酸pH平衡机制及潜在应用[J]. 中国生物工程杂志, 2017, 37(12):103-110. Zhang YM, Qiao JJ. Mechanism of acid tolerance in acidophiles with pH homeostasis and its potential applications[J]. China Biotechnology, 2017, 37(12):103-110 (in Chinese).
    [49] Offre P, Kerou M, Spang A, Schleper C. Variability of the transporter gene complement in ammonia-oxidizing archaea[J]. Trends in Microbiology, 2014, 22(12):665-675.
    [50] Søgaard R, Alsterfjord M, MacAulay N, Zeuthen T. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH[J]. Pflügers Archiv-European Journal of Physiology, 2009, 458(4):733-743.
    [51] Wang BZ, Qin W, Ren Y, Zhou X, Jung MY, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L, Yan X, Ji Jb, Liu Y, Liu Lm, Heiner C, Hall R, Martens-Habbena W, Herbold CW, Rhee S, et al. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons[J]. The ISME Journal, 2019, 13(12):3067-3079.
    [52] Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, Könneke M, Littmann S, Mooshammer M, Niggemann J, Petrov S, Richter A, Stewart FJ, Wagner M, Kuypers MMM, Bristow LA. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment[J]. Nature Microbiology, 2019, 4(2):234-243.
    [53] Liu JJ, Liu W, Zhang YB, Chen CJ, Wu WX, Zhang TC. Microbial communities in rare earth mining soil after in-situ leaching mining[J]. Science of the Total Environment, 2021, 755(Pt 1).
    [54] 席瑞娇. 土壤pH和抑制剂对氨氧化微生物的影响及其作用机制[D]. 北京:中国科学院大学硕士学位论文, 2017. Xi RJ. The effects and mechanism of soil pH and inhibitors on ammonia oxidizers[D]. Beijing:Master's Thesis of University of Chinese Academy of Sciences, 2017 (in Chinese).
    [55] Huang LB, Chakrabarti S, Cooper J, Perez A, John SM, Daroub SH, Martens-Habbena W. Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil[J]. ISME Communications, 2021, 1.
    [56] Huang R, Wu YC, Zhang JB, Zhong WH, Jia ZJ, Cai ZC. Nitrification activity and putative ammonia-oxidizing archaea in acidic red soils[J]. Journal of Soils and Sediments, 2012, 12(3):420-428.
    [57] 李文兴, 郑曼曼, 王超, 沈仁芳. 亚硝化球菌属(Nitrososphaera)可能是酸性土壤硝化作用的重要驱动者[J]. 土壤, 2021, 53(1):13-20. Li WX, Zheng MM, Wang C, Shen RF. Nitrososphaera may be a major driver of nitrification in acidic soils[J]. Soils, 2021, 53(1):13-20 (in Chinese).
    [58] Li YY, Chapman SJ, Nicol GW, Yao HY. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 2018, 116:290-301.
    [59] Song H, Che Z, Cao WC, Huang T, Wang JG, Dong ZR. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen[J]. Environmental Science and Pollution Research, 2016, 23(12):11964-11974.
    [60] Hu JJ, Zhao YX, Yao XW, Wang JQ, Zheng P, Xi CW, Hu BL. Dominance of comammox Nitrospira in soil nitrification[J]. Science of the Total Environment, 2021, 780.
    [61] 唐修峰, 秦华, 匡璐, 王欣欣, 宋玉翔, 高豪, 刘林梦, 任一, 单军, 张焕朝, 王保战. 基于宏基因组学的酸性森林土壤氨氧化微生物群落特征研究[J]. 土壤学报, 2021, 58(5):1311-1321. Tang XF, Qin H, Kuang L, Wang XX, Song YX, Gao H, Liu LM, Ren Y, Shan J, Zhang HC, WANG BZ. Metagenomics based study on community characteristics of ammonia-oxidizing microorganisms in acid forest soil[J]. Acta Pedologica Sinica, 2021, 58(5):1311-1321 (in Chinese).
    [62] Cai MW, Ng SK, Lim CK, Lu HY, Jia YY, Lee PKH. Physiological and metagenomic characterizations of the synergistic relationships between ammonia-and nitrite-oxidizing bacteria in freshwater nitrification[J]. Frontiers in Microbiology, 2018, 9:280.
    [63] Yu CD, Hou LJ, Zheng YL, Liu M, Yin GY, Gao J, Liu C, Chang YK, Han P. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments[J]. Applied Microbiology and Biotechnology, 2018, 102(21):9363-9377.
    [64] Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de Lose Santos QM, Dick GJ, Raskin L. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system[J]. mSphere, 2016, 1(1):e00054-15.
    [65] Luo SP, Peng Y, Liu Y, Peng YZ. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Frontiers of Environmental Science & Engineering, 2022, 16(9):123.
    [66] Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX. Ubiquity and diversity of complete ammonia oxidizers (comammox)[J]. Applied and Environmental Microbiology, 2018, 84(24):24.
    [67] Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11):523-531.
    [68] Lu L, Han WY, Zhang JB, Wu YC, Wang BZ, Lin XG, Zhu JG, Cai ZC, Jia ZJ. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10):1978-1984.
    [69] 苏瑜, 王为东. 我国北方四类土壤中氨氧化古菌和氨氧化细菌的活性及对氨氧化的贡献[J]. 环境科学学报, 2017, 37(9):3519-3527. Su Y, Wang WD. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in north China[J]. Acta Scientiae Circumstantiae, 2017, 37(9):3519-3527 (in Chinese).
    [70] 黄学茹. 铁氧化物与有机质对酸性土壤硝化作用的影响[D]. 重庆:西南大学博士学位论文, 2016. Huang XR. Effects of iron oxide and organic matter on acidic soil nitrification[D]. Chongqing:Doctoral Dissertation of Southwest University, 2016 (in Chinese).
    [71] 苏静. 酸性土壤硝化过程中NH3来源的研究[D]. 重庆:西南大学硕士学位论文, 2016. Su J. The quest for the source of NH3 during nitrification in acidic soils[D]. Chongqing:Master's Thesis of Southwest University, 2016 (in Chinese).
    [72] 刘倩. 土地利用方式对红壤氨氧化微生物种类的影响及其驱动因子[D]. 南京:南京师范大学硕士学位论文, 2016. Liu Q. The effects of land use on soil ammonia-oxidizing microorganisms and its driving factors in red soil region[D]. Nanjing:Master's Thesis of Nanjing Normal University, 2016 (in Chinese).
    [73] Zeng J, Zhao DY, Yu ZB, Huang R, Wu QLL. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms[J]. PLoS One, 2014, 9(6).
    [74] Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C. Nitrification in terrestrial hot springs of Iceland and Kamchatka[J]. FEMS Microbiology Ecology, 2008, 64(2):167-174.
    [75] Li HZ, Yang QH, Li J, Gao H, Li P, Zhou HY. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China[J]. Scientific Reports, 2015, 5.
    [76] He ZY, Shen JP, Zhang LM, Tian HJ, Han B, Di HJ, He JZ. DNA stable isotope probing revealed no incorporation of 13CO2 into comammox Nitrospira but ammonia-oxidizing archaea in a subtropical acid soil[J]. Journal of Soils and Sediments, 2020, 20(3):1297-1308.
    [77] 刘天琳. 不同pH及土地利用方式对土壤硝化作用及硝化微生物的影响[D]. 重庆:西南大学硕士学位论文, 2020. Liu TL. The effect of soil pH and land use on soil nitrification and nitrifying microorganisms[D]. Chongqing:Master's Thesis of Southwest University, 2020 (in Chinese).
    [78] Ye HJ, Tang CY, Cao YJ, Li X, Huang PY. Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils[J]. Environmental Science and Pollution Research International, 2022, 29(12):17209-17222.
    [79] Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13):4618-4625.
    [80] 孙晋伟, 黄益宗, 招礼军, 李小方, 高卫国. Cu对我国17种典型土壤硝化速率的影响[J]. 生态毒理学报, 2008, 3(5):513-520. Sun JW, Huang YZ, Zhao LJ, Li XF, Gao WG. Effects of copper on nitrification rates in 17 kinds of typical soils in China[J]. Asian Journal of Ecotoxicology, 2008, 3(5):513-520 (in Chinese).
    [81] 洪晨, 邢奕, 司艳晓, 李洋. 铁矿区内重金属对土壤氨氧化微生物群落组成的影响[J]. 中国环境科学, 2014, 34(5):1212-1221. Hong C, Xing Y, Si YX, Li Y. Impact of long-term heavy metals pollution on ammonia oxidizing microbial community in an iron mine soil[J]. China Environmental Science, 2014, 34(5):1212-1221 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘晶静,马文丹,和松,吴增学,李春. 酸性土壤氨氧化微生物及其影响因素研究进展[J]. 微生物学通报, 2023, 50(1): 413-426

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-22
  • 最后修改日期:2022-07-20
  • 在线发布日期: 2023-01-03
文章二维码