科微学术

微生物学通报

三株植物促生木霉的固体发酵工艺优化
作者:
基金项目:

江苏省政策引导类计划(国际科技合作/港澳台科技合作)项目(BZ2020026);江苏省农业科技自主创新基金[CX(20)2004];中央本级重大增减支项目(2060302)


Optimization of solid fermentation process of three Trichoderma strains with plant growth-promoting effects
Author:
  • YUAN Ziyi

    YUAN Ziyi

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHANG Meini

    SHANG Meini

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Yan

    WANG Yan

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Ruimin

    LI Ruimin

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Lü Nana

    Lü Nana

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Hongjun

    LIU Hongjun

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHEN Zongzhuan

    SHEN Zongzhuan

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Rong

    LI Rong

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHEN Qirong

    SHEN Qirong

    Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】木霉是广泛分布于自然界中的一类真菌,能产生多种酶类和次生代谢产物,具有促进植物生长、提高土壤肥力、拮抗多种土传病原菌等作用。【目的】优化3株植物根际促生真菌(长枝木霉MD30、桔绿木霉JS84及贵州木霉NJAU4742)的固体发酵条件,探究不同发酵条件对木霉产孢量的影响,为木霉菌的生产提供参考。【方法】采用单因素试验和响应面法,对3种木霉在不同发酵条件下的产孢量进行测定并优化,分析了氮源添加、初始pH、物料厚度、接种量、温度等因子对固体发酵的影响。【结果】单因素试验表明,长枝木霉MD30、桔绿木霉JS84与贵州木霉NJAU4742固体发酵时,最佳发酵温度均为28℃、最优木霉菌液接种量均为10%、物料发酵厚度均为3.0cm,但最佳的初始物料pH与氨基酸水解液添加量有所不同,其中,长枝木霉MD30与贵州木霉NJAU4742发酵最佳的初始pH值为5.0,而桔绿木霉JS84为3.0;长枝木霉MD30与贵州木霉NJAU4742发酵最佳的氨基酸水解液添加量为10%,而桔绿木霉JS84为5%。通过试验分析,确定初始pH、物料厚度、温度为影响产孢量的3个重要因素。响应面分析得到最佳发酵条件:长枝木霉MD30固体发酵最佳条件为初始pH值为5.0,物料厚度3.0cm,温度27.4℃,在此优化条件下每克干重的固体产物中孢子数量高达6.3×109CFU;桔绿木霉JS84固体发酵最佳条件为初始pH值为3.0,物料厚度3.0cm,温度28.8℃,在此优化条件下每克干重的固体产物中孢子数量高达6.9×109CFU;贵州木霉NJAU4742固体发酵最佳条件为初始pH值为5.0,物料厚度3.3cm,温度26.7℃,在此优化条件下每克干重的固体产物中孢子数量高达5.1×109CFU。【结论】响应面优化试验能提高试验效率,增大木霉产孢量,降低生产成本,有利于田间应用和菌剂的商业化生产。

    Abstract:

    [Background] Trichoderma is a kind of fungus widely distributed in nature, which produces a variety of enzymes and secondary metabolites, showing many benefits including promoting plant growth, improving soil fertility, and antagonizing various soil-borne pathogens. [Objective] To optimize the solid fermentation conditions of three plant growth-promoting fungi (Trichodermalongibrachiatum MD30, T. citrinoviride JS84, and T. guizhouense NJAU4742), the effects of different fermentation conditions on the spore production of Trichoderma spp. were explored to provide references for Trichoderma spp. production. [Methods] In this study, the spore production of three Trichoderma spp. under different fermentation conditions was measured and optimized by the single factor experiment and the response surface methodology. The effects of the addition of nitrogen source, initial pH, material thickness, inoculation amount, and temperature on solid fermentation were analyzed. [Results] The single factor experiment showed that the optimal fermentation temperature of T. longibrachiatum MD30, T. citrinoviride JS84, and T. guizhouense NJAU4742 was 28 ℃, and the optimal amount of Trichoderma liquid inoculum was 10% with 3.0 cm material fermentation thickness. However, the optimal initial pH of the material and the addition amount of amino acid hydrolyzate were different among these three strains. In detail, the optimal initial pH value of T. longbranchus MD30 and T. guizhouense NJAU4742 for solid fermentation was 5.0, while that of T. citrinoviride JS84 was 3.0. The optimum amino acid hydrolyzate addition amount for solid fermentation of T. longbranchus MD30 and T. guizhouense NJAU4742 was 10%, while that of T. citrinoviride JS84 was 5%. Based on the experimental analysis, the initial pH, material thickness, and temperature were selected as three top important factors in the determination of the spore production. Therefore, the optimal fermentation conditions for solid fermentation of these three strains were obtained based on the response surface analysis. The optimal conditions for solid fermentation of T. longbranchus MD30 were the initial pH value of 5.0, the material thickness of 3.0 cm, and thetemperature of 27.4 ℃. Under this optimized condition, the number of spores per gram dry weight of the solid fermentation product was as high as 6.3×109 CFU. The optimal conditions for solid fermentation of T. citrinoviride JS84 were the initial pH value of 3.0, the material thickness of 3.0 cm, and the temperature of 28.8 ℃. Under this optimized condition, the number of spores per gram dry weight of the solid fermentation product was as high as 6.9×109 CFU. The optimal conditions for solid fermentation of T. guizhouense NJAU4742 were the initial pH value of 5.0, the material thickness of 3.3 cm, and the fermentation temperature of 26.7 ℃. Under this optimized condition, the number of spores per gram dry weight of the solid fermentation product was as high as 5.1×109 CFU. [Conclusion] Response surface optimization experiment improves the experimental efficiency, increases the spore production of Trichoderma spp., reduces the production cost, and is conducive to field application and commercial production of bacterial agents.

    参考文献
    [1] 刘世祥, 张荣胜, 刘永锋, 谷祖敏, 于俊杰. 深绿木霉TA-9分生孢子固体发酵的响应曲面法优化[J]. 农药学学报, 2022, 24(1):96-104. Liu SX, Zhang RS, Liu YF, Gu ZM, Yu JJ. Optimization of solid-state fermentation process of Trichoderma atroviride TA-9 by response surface methodology[J]. Chinese Journal of Pesticide Science, 2022, 24(1):96-104 (in Chinese).
    [2] 葛永怡, 刘阳, 王天鹏, 邓道文, 杨正军, 于凤明. 长枝木霉GF-10的固体发酵条件优化[J]. 农药, 2017, 56(1):27-29, 35. GE YY, LIU Y, WANG TP, DENG DW, YANG ZJ, YU FM. Optimization of solid-state fermentation conditions for Trichoderma longibrachiatum GF-10[J]. Agrochemicals, 2017, 56(1):27-29, 35 (in Chinese).
    [3] 蔡枫. 木霉NJAU 4742促生作用及其Hydrophobin家族基因特性研究[D]. 南京:南京农业大学博士学位论文, 2017. CAI F. Plant growth promotion study and genetic characterization of hydrophobin family genes within Trichoderma NJAU 4742[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2017 (in Chinese).
    [4] 杨丹丹, 杨传伦, 张心青, 潘冬梅, 李佳明, 陈振发. 响应面法优化绿色木霉产孢子固体发酵培养基[J]. 中国农学通报, 2020, 36(36):84-92. YANG DD, YANG CL, ZHANG XQ, PAN DM, LI JM, CHEN ZF. Response surface methodology applied to spores production by solid-state fermentation of Trichoderma viride[J]. Chinese Agricultural Science Bulletin, 2020, 36(36):84-92 (in Chinese).
    [5] 景芳, 张树武, 刘佳, 徐秉良. 长枝木霉T6生防菌剂发酵条件优化及其对辣椒立枯病的防治效果[J]. 中国生物防治学报, 2020, 36(1):113-124. JING F, ZHANG SW, LIU J, XU BL. Optimization of the fermentation conditions of biocontrol agent Trichoderma longibrachiatum T6 and its efficiency against pepper blight[J]. Chinese Journal of Biological Control, 2020, 36(1):113-124 (in Chinese).
    [6] 鲁海菊, 王波, 潘柳君, 孟有波, 张晓永. 深绿木霉P3.9生防菌株固体发酵条件优化筛选[J]. 北方园艺, 2014(14):119-123. LU HJ, WANG B, PAN LJ, MENG YB, ZHANG XY. Screening on conditions of solid fermentation for biocontrol strain P3.9 of Trichoderma atroviride[J]. Northern Horticulture, 2014(14):119-123 (in Chinese).
    [7] 潘玮. 绿色木霉厚垣孢子与分生孢子生物学特性及生防效果的比较研究[D]. 北京:中国农业科学院硕士学位论文, 2006. PAN W. Study the biological properties and bioefficacy of chlamydospore and conidium from Trichoderma viride[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2006 (in Chinese).
    [8] 杨丹丹, 王建平, 马娜娜, 张心青, 倪建龙, 潘冬梅. 绿色木霉固体发酵产孢子的条件优化[J]. 中国农学通报, 2020, 36(12):111-119. YANG DD, WANG JP, MA NN, ZHANG XQ, NI JL, PAN DM. Optimization of solid-state fermentation for spores production by Trichoderma viride[J]. Chinese Agricultural Science Bulletin, 2020, 36(12):111-119 (in Chinese).
    [9] 杨小龙, 石朝慧, 乔燚, 游钟浩, 顾钢, 林智慧, 周挺, 梁颁捷, 陈承亮, 刘国坤, 等. 基于聚氨酯海绵载体的棘孢木霉固体发酵培养基筛选[J]. 中国生物防治学报, 2022, 38(1):88-96. YANG XL, SHI CH, QIAO Y, YOU ZH, GU G, LIN ZH, ZHOU T, LIANG BJ, CHEN CL, LIU GK, et al. Screening of solid fermentation medium for Trichoderma asperellum based on polyurethane sponge carrier[J]. Chinese Journal of Biological Control, 2022, 38(1):88-96 (in Chinese).
    [10] Fasih UH.生物炭与微生物(哈茨木霉和枯草芽孢杆菌)复合施用可提高谷类豆科作物的生产力、修复土壤镉污染[D]. 兰州:甘肃农业大学博士学位论文, 2021. Fasih UH. The compound application of carbon and microorganisms (Trichoderma harzianum and Bacillus subtilis) can improve the productivity of cereal legumes and repair soil cadmium pollution[D]. Lanzhou:Doctoral Dissertation of Gansu Agricultural University, 2021 (in Chinese).
    [11] 刘华, 李崇高, 黄建初. 响应面法对绿色木霉产纤维素酶固态发酵条件优化[J]. 安徽农业大学学报, 2017, 44(6):980-985. LIU H, LI CG, HUANG JC. Condition optimization of solid fermentation for cellulase production by Trichoderma viride using response surface methodology[J]. Journal of Anhui Agricultural University, 2017, 44(6):980-985 (in Chinese).
    [12] 张婧迪, 蔡明美, 刘志诚, 陈捷. 响应面设计优化绿僵菌固体发酵条件[J]. 微生物学通报, 2016, 43(9):2072-2078. ZHANG JD, CAI MM, LIU ZC, CHEN J. Metarhizium solid-state fermentation optimization by response surface analysis[J]. Microbiology China, 2016, 43(9):2072-2078 (in Chinese).
    [13] 张瑾, 张树武, 徐秉良, 古丽君, 薛应钰. 长枝木霉菌抑菌谱测定及其抑菌作用机理研究[J]. 中国生态农业学报, 2014, 22(6):661-667. ZHANG J, ZHANG SW, XU BL, GU LJ, XUE YY. Determining antifungal spectrum and mechanism of Trichoderma longibrachiatum in vitro[J]. Chinese Journal of Eco-Agriculture, 2014, 22(6):661-667 (in Chinese).
    [14] 梁昌聪, 刘磊, 张建华, 郭立佳, 杨腊英, 王国芬, 王伟伟, 黄俊生. 绿色木霉菌H06固体浅盘发酵工艺优化[J]. 菌物学报, 2014, 33(6):1313-1326. LIANG CC, LIU L, ZHANG JH, GUO LJ, YANG LY, WANG GF, WANG WW, HUANG JS. Optimization of shallow tray fermentation process of Trichoderma vi-ride H06[J]. Mycosystema, 2014, 33(6):1313-1326 (in Chinese).
    [15] 朱佳芯, 张庚, 商美妮, 刘红军, 沈宗专, 李荣, 沈其荣. 耐热木霉菌株筛选及其对热作区香蕉促生效应的研究[J]. 微生物学报, 2021, 61(1):206-218. ZHU JX, ZHANG G, SHANG MN, LIU HJ, SHEN ZZ, LI R, SHEN QR. Isolation and identification of a thermostable Trichoderma strain for banana growth promotion in tropic area[J]. Acta Microbiologica Sinica, 2021, 61(1):206-218 (in Chinese).
    [16] 朱佳芯, 商美妮, 李荣, 刘红军, 乔策策, 陶成圆, 沈宗专, 沈其荣. 适用热区芒果园的木霉生物有机肥研制及其应用[J]. 中国土壤与肥料, 2021(3):155-162. ZHU JX, SHANG MN, LI R, LIU HJ, QIAO CC, TAO CY, SHEN ZZ, SHEN QR. Development and application of specific bio-organic fertilizer containing Trichoderma strain for mango orchard in tropic areas[J]. Soil and Fertilizer Sciences in China, 2021(3):155-162 (in Chinese).
    [17] 李瑞霞. 贵州木霉NJAU 4742对矿质元素的活化及对番茄的促生效果研究[D]. 南京:南京农业大学硕士学位论文, 2016. LI RX. Solubilisation of mineral element by Trichoderma guizhouense and the effect of its biofertilizer on tomato plant growth[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016 (in Chinese).
    [18] 段婉冬. 甜叶菊渣固体发酵木霉NJAU 4742及发酵菌剂对玉米苗期生长的影响[D]. 南京:南京农业大学硕士学位论文, 2020. DUAN WD. Solid state fermentation of Trichoderma NJAU 4742 with Stevia resvia residue and its effects on corn growth in seeding stage[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2020 (in Chinese).
    [19] LIU HJ, ZHONG X, HUANG Y, QIAO CC, SHAO C, LI R, SHEN QR. Production of free amino acid and short peptide fertilizer from rapeseed meal fermentation using Bacillus flexus NJNPD41 for promoting plant growth[J]. Pedosphere, 2018, 28(2):261-268.
    [20] 孙冬梅, 林志伟. 黄绿木霉发酵液对水稻纹枯病菌作用的研究[J]. 植物保护, 2009, 35(4):83-86. SUN DM, LIN ZW. Effects of Trichoderma aureoviride fermentation on Rhizoctonia solani[J]. Plant Protection, 2009, 35(4):83-86 (in Chinese).
    [21] 李松鹏, 崔琳琳, 程家森, 陈桃, 付艳苹, 谢甲涛. 两株哈茨木霉菌株防治水稻纹枯病及促进水稻生长的潜力研究[J]. 植物病理学报, 2018, 48(1):98-107. LI SP, CUI LL, CHENG JS, CHEN T, FU YP, XIE JT. Assessment of two Trichoderma harzianum strains for biocontrol against rice sheath blight and growth promotion of rice[J]. Acta Phytopathologica Sinica, 2018, 48(1):98-107 (in Chinese).
    [22] 李艳娟, 刘博, 庄正, 尚天赦, 刘青青, 朱晨曦, 王正宁. 哈茨木霉与绿色木霉对杉木种子萌发和幼苗生长的影响[J]. 应用生态学报, 2017, 28(9):2961-2966. LI YJ, LIU B, ZHUANG Z, SHANG TS, LIU QQ, ZHU CX, WANG ZN. Effects of Trichoderma hazianum and T. viride on seed germination and seedling growth of Chinese fir[J]. Chinese Journal of Applied Ecology, 2017, 28(9):2961-2966 (in Chinese).
    [23] 曲薇, 伍淼, 王旭东, 张淑梅, 陈秀玲, 王傲雪. 哈茨木霉菌株WY-1对番茄的促生防病效果[J]. 江苏农业科学, 2018, 46(5):94-96. QU W, WU M, WANG XD, ZHANG SM, CHEN XL, WANG AX. Effects of Trichoderma harzianum strain WY-1 on growth and disease control of tomato[J]. Jiangsu Agricultural Sciences, 2018, 46(5):94-96 (in Chinese).
    [24] 常媛, 杨兴堂, 姜传英, 姚志红, 贾让, 任龙辉, 张荣沭. 一株能拮抗3种土传病害病原真菌的长枝木霉[J]. 草业科学, 2017, 34(2):246-254. CHANG Y, YANG XT, JIANG CY, YAO ZH, JIA R, REN LH, ZHANG RS. A Trichoderma longibrachiatum strain with antagonistic effects against three soil-borne pathogenic fungi[J]. Pratacultural Science, 2017, 34(2):246-254 (in Chinese).
    [25] 扈进冬, 杨在东, 吴远征, 魏艳丽, 杨合同, 卢德鹏, 李纪顺. 哈茨木霉拌种对冬小麦生长、土传病害及根际真菌群落的影响[J]. 植物保护, 2021, 47(5):35-40. HU JD, YANG ZD, WU YZ, WEI YL, YANG HT, LU DP, LI JS. Effects of seed dressing treatment with Trichoderma harzianum on the growth of winter wheat seedlings, soil borne diseases and rhizosphere fungal community[J]. Plant Protection, 2021, 47(5):35-40 (in Chinese).
    [26] 谷祖敏, 毕卉, 张兵, 田晓颖. 不同木霉菌株对黄瓜枯萎病菌的拮抗作用[J]. 西北农业学报, 2018, 27(3):426-431. GU ZM, BI H, ZHANG B, TIAN XY. Inhibition action of different Trichoderma strains on Fusarium oxysporum f. sp. cucumerinum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(3):426-431 (in Chinese).
    [27] 韩桂云, 齐玉臣, 刘忱, 周玉芝. 温度、pH对菌根真菌生长影响的研究[J]. 生态学杂志, 1993, 12(1):15-19. HAN GY, QI YC, LIU C, ZHOU YZ. Effects of temperature and pH on mycorrbizal fungus growth[J]. Chinese Journal of Ecology, 1993, 12(1):15-19 (in Chinese).
    [28] 董钰鑫, 陈莎, 高梦祥, 李利. pH对红色红曲菌(Monascus ruber) M7生长及产孢的影响[J]. 中国酿造, 2022, 41(3):76-80. DONG YX, CHEN S, GAO MX, LI L. Effect of pH on the growth and sporulation of Monascus ruber M7[J]. China Brewing, 2022, 41(3):76-80 (in Chinese).
    [29] 白洪志, 王惠, 韩梅, 肖亦农, 杨谦, 韩晓日. 绿色木霉C-08产纤维素酶的固态发酵条件优化[J]. 沈阳农业大学学报, 2010, 41(6):681-685. BAI HZ, WANG H, HAN M, XIAO YN, YANG Q, HAN XR. Solid state fermentation condition optimizing of Trichoderma viride C-08 for producing cellulase[J]. Journal of Shenyang Agricultural University, 2010, 41(6):681-685 (in Chinese).
    [30] 蔡守平. 绿僵菌MaZPTR-01菌株固体发酵条件筛选研究[J]. 西南林业大学学报, 2016, 36(5):100-105. CAI SP. Optimization in solid-state fermentation of Metarhizium anisopliae MaZPTR-01[J]. Journal of Southwest Forestry University, 2016, 36(5):100-105 (in Chinese).
    [31] 张如. 利用秸秆和糖厂滤泥固体发酵研制木霉生物有机肥[D]. 南京:南京农业大学硕士学位论文, 2016. ZHANG R. Development of Trichoderma-containing bio-organic fertilizer through solid fermentation with straw and sugar filter mud as substrates[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016 (in Chinese).
    [32] 曾庆才, 肖荣凤, 刘波, 陈燕萍, 史怀. 生防菌哈茨木霉FJAT-9040固体发酵条件的响应面优化[J]. 福建农业学报, 2015, 30(2):192-197. ZENG QC, XIAO RF, LIU B, CHEN YP, SHI H. Optimization of solid-state fermentation condition for the biocontrol strain of Trichoderma harzianum FJAT-9040 by response surface methodology[J]. Fujian Journal of Agricultural Sciences, 2015, 30(2):192-197 (in Chinese).
    [33] 夏斯琴, 王伟. 绿色木霉T4的固体发酵工艺及其制剂稳定性的研究[J]. 化学与生物工程, 2008, 25(12):52-56. XIA SQ, WANG W. Study on solid fermentation process and stability of preparation of Trichoderma viride T4[J]. Chemistry & Bioengineering, 2008, 25(12):52-56 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁紫仪,商美妮,王琰,李瑞敏,吕娜娜,刘红军,沈宗专,李荣,沈其荣. 三株植物促生木霉的固体发酵工艺优化[J]. 微生物学通报, 2023, 50(1): 235-250

复制
分享
文章指标
  • 点击次数:469
  • 下载次数: 1217
  • HTML阅读次数: 811
  • 引用次数: 0
历史
  • 收稿日期:2022-04-22
  • 最后修改日期:2022-08-08
  • 在线发布日期: 2023-01-03
文章二维码