科微学术

微生物学通报

一株达乌里胡枝子耐盐碱内生细菌的鉴定和促生特性
作者:
基金项目:

国家自然科学基金(31870438);山西农业大学科技创新基金(2018YJ37)


Identification and growth promotion analysis of a salt-alkali tolerant endophyte strain isolated from Lespedeza daurica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】达乌里胡枝子(Lespedeza daurica)是黄土高原地区退化盐碱草地修复和改良的重要乡土草,植物-内生细菌共生体在维持甚至提升植物抗逆性方面发挥重要作用。【目的】筛选优势达乌里胡枝子耐盐碱内生细菌,对其基本特性、耐盐碱能力和促生特性进行评价。【方法】从山西省人工栽培达乌里胡枝子根系中筛选出一株耐盐碱的内生细菌菌株DP20,通过形态学观察、生理生化测定和16S rRNA基因序列分析对该菌株进行鉴定;利用不同盐碱浓度(0、1%、3%、5%、7%)和不同pH值(7.0、8.0、9.0、10.0、11.0、12.0)的液体培养基测定其菌株密度;采用功能性培养基测定其促生特性,对促生产物进行定量测定;采用培养皿滤纸法验证该菌对达乌里胡枝子种子萌发及生长的影响,采用平板试验法分析该菌对拟南芥生长的影响。【结果】菌株DP20为路德维希肠杆菌(Enterobacter ludwigii),其生长最适盐浓度为0-5%,最高耐受浓度达7%。菌株DP20具有产生长素吲哚乙酸(indole-3-acetic acid,IAA)能力,可达30.81mg/L;具有溶解有机磷能力,溶磷量为0.53mg/L;该菌株兼具分泌铁载体和有机酸能力,其中铁载体的相对表达量(SU值)达67.67%;并且可在无氮固体培养基上生长。菌株DP20显著提高了达乌里胡枝子种子发芽率,提高了达乌里胡枝子和拟南芥植株鲜重,促进了达乌里胡枝子和拟南芥根系发育。【结论】耐盐碱菌株DP20促生性能显著,这为后期应用于达乌里胡枝子改良晋北盐碱土地提供了高效促生、耐盐碱的内生细菌资源,同时有助于开发路德维希肠杆菌在微生物菌剂方面的潜能。

    Abstract:

    [Background] Lespedeza daurica is an important native grass for the restoration and improvement of degraded salt-alkali grassland in the Loess Plateau. Plant-endophyte symbiosis play an important role in maintaining and improving plant stress resistance. [Objective] To screen out the dominant endophyte with salt-alkali resistance and evaluate their basic characteristics, salt-alkali tolerance, and growth promoting properties. [Methods] A saline-alkali resistant endophyte strain DP20 was screened out from the root system of L. daurica artificially cultured in Shanxi Province. DP20 was identified by morphological observation, physiological and biochemical measurements, and 16S rRNA gene sequencing analysis. The liquid mediums with different salt-alkali concentration (salt concentration was 0, 1%, 3%, 5%, and 7%, and the pH was 7.0, 8.0, 9.0, 10.0, 11.0, and 12.0) were used to measure their saline-alkali tolerance. The functional mediums were used to measure their growth-promoting function. Meanwhile, the catalyst was quantitatively determined. The petri dish filter paper method was used to verify the effects of this strain on the seed germination and growth of L. daurica. Plate test was used to explore the effects of this strain on the growth of Arabidopsis thaliana. [Results] The strain DP20 was Enterobacter ludwigii. The optimum salt concentration for its growth was 0-5%, and the highest tolerance concentration was 7%. It was found that strain DP20 had the ability to produce auxin (IAA), up to 30.81 mg/L, and the decomposition capacity of organophosphorus, reaching 0.53 mg/L. Furthermore, the strain had the ability to produce siderophores and secrete organic acids, and the concentration of siderophores reached 67.67%. Strain DP20 grew on the NFM solid medium. Strain DP20 significantly promoted the seed germination rate, plant fresh weight, and root development of L. daurica and A. thaliana. [Conclusion] The saline-alkali tolerant strain DP20 has significant growth promoting ability, which provides efficient and saline-alkali resistant endogenous resources for the later application of L. daurica in the improvement of saline-alkali soil in northern Shanxi, and is helpful to develop the potential of E. ludwigii as a microbial agent.

    参考文献
    [1] XIAO F, ZHOU BB, WANG HB, DUAN ML, FENG L.[A6] Effects of different soil amendments on physicochemical property of soda saline-alkali soil and crop yield in Northeast China[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(1):192-198.
    [2] ZHANG YT, HOU K, QIAN H, GAO YY, FANG Y, XIAO S, TANG SQ, ZHANG QY, QU WG, REN WH. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China[J]. Science of the Total Environment, 2022, 837:155808.
    [3] 许庆方, 秦立刚, 董宽虎, 杨桂英, 赵祥, 高文俊, 佟莉蓉. 晋北黄土高原盐碱化草地的土壤理化性质[J]. 草业科学, 2012, 29(2):174-178. XU QF, QIN LG, DONG KH, YANG GY, ZHAO X, GAO WJ, TONG LR. A study on physico-chemical properties of saline-alkaline grassland soil in Loess Plateau of the north of Shanxi Province[J]. Pratacultural Science, 2012, 29(2):174-178 (in Chinese).
    [4] 蒯晓妍, 邢鹏飞, 张晓琳, 梁艳, 王常慧, 董宽虎. 短期放牧强度对半干旱草地植物群落多样性和生产力的影响[J]. 草地学报, 2018, 26(6):1283-1289. KUAI XY, XING PF, ZHANG XL, LIANG Y, WANG CH, DONG KH. Effects of short-term grazing intensity on plant community diversity and productivity in semi-arid grassland[J]. Acta Agrestia Sinica, 2018, 26(6):1283-1289 (in Chinese).
    [5] 鲁凯珩, 金杰人, 肖明. 微生物肥料在盐碱土壤中的应用展望[J]. 微生物学通报, 2019, 46(7):1695-1705. LU KH, JIN JR, XIAO M. Prospect of microbial fertilizer in saline soil[J]. Microbiology China, 2019, 46(7):1695-1705 (in Chinese).
    [6] MACHADO R, SERRALHEIRO R. Soil salinity:effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2):30.
    [7] BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8):478-486.
    [8] RANAWAT B, MISHRA S, SINGH A. Enterobacter hormaechei (MF957335) enhanced yield, disease and salinity tolerance in tomato[J]. Archives of Microbiology, 2021, 203(5):2659-2667.
    [9] SHOEBITZ M, RIBAUDO CM, PARDO MA, CANTORE ML, CIAMPI L, CURÁ JA. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41(9):1768-1774.
    [10] PRAMANIK K, MITRA S, SARKAR A, MAITI TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. Journal of Hazardous Materials, 2018, 351:317-329.
    [11] FATIMA I, HAKIM S, IMRAN A, AHMAD N, IMTIAZ M, ALI H, ISLAM EU, YOUSAF S, MIRZA MS, MUBEEN F. Exploring biocontrol and growth-promoting potential of multifaceted PGPR isolated from natural suppressive soil against the causal agent of chickpea wilt[J]. Microbiological Research, 2022, 260:127015.
    [12] SRISUK N, SAKPUNTOON V, NUTARATAT P. Production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206 using sweet whey as a low-cost feed stock[J]. Journal of Microbiology and Biotechnology, 2018, 28(9):1511-1516.
    [13] JHA CK, AERON A, PATEL BV, MAHESHWARI DK, SARAF M. Enterobacter:Role in plant growth promotion[A]//Bacteria in Agrobiology:Plant Growth Responses[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:159-182.
    [14] PANIGRAHI S, MOHANTY S, RATH CC. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops[J]. South African Journal of Botany, 2020, 134:17-26.
    [15] PATEL PJ, BHATT S, PATEL H, SARAF M. Iron chelating bacteria:a carrier for biofortification and plant growth promotion[J]. Journal of Biological Studies, 2020, 3(3):111-120.
    [16] MIR MI, HAMEEDA B, QUADRIYA H, KUMAR BK, ILYAS N, KEE ZUAN AT, EL ENSHASY HA, DAILIN DJ, KASSEM HS, GAFUR A, SAYYED RZ. Multifarious indigenous diazotrophic rhizobacteria of rice (Oryza sativa L.) rhizosphere and their effect on plant growth promotion[J]. Frontiers in Nutrition, 2021, 8:781764.
    [17] KHANGHAHI MY, STRAFELLA S, ALLEGRETTA I, CRECCHIO C. Isolation of bacteria with potential plant-promoting traits and optimization of their growth conditions[J]. Current Microbiology, 2021, 78(2):464-478.
    [18] COCHARD B, GIROUD B, CROVADORE J, CHABLAIS R, ARMINJON L, LEFORT F. Endophytic PGPR from tomato roots:isolation, in vitro characterization and in vivo evaluation of treated tomatoes (Solanum lycopersicum L.)[J]. Microorganisms, 2022, 10(4):765.
    [19] LI C, JIA ZH, PENG XN, ZHAI L, ZHANG B, LIU X, ZHANG JC. Functions of mineral-solubilizing microbes and a water retaining agent for the remediation of abandoned mine sites[J]. Science of the Total Environment, 2021, 761:143215.
    [20] 王改萍, 祝长青, 王茹. 一株耐盐甲基杆菌Methylobacterium sp. W-1的分离及促生潜能研究[J]. 微生物学通报, 2021, 48(11):4134-4144. WANG GP, ZHU CQ, WANG R. Isolation and growth-promoting potential of a salt tolerant strain of Methylobacterium sp. W-1[J]. Microbiology China, 2021, 48(11):4134-4144 (in Chinese).
    [21] 黄臣, 杨凯元, 高鹏, 梁银萍, 韩玲娟, 赵祥. 达乌里胡枝子根际解磷细菌的筛选、鉴定及特性研究[J]. 草地学报, 2022 30(9):2345-2355. HUANG C, YANG KY, GAO P, HAN LJ, ZHAO X. Screening, identification and characteristics of phosphate-solubilizing microorganisms in Lespedeza daurica[J]. Acta Agrestia Sinica, 2022 30(9):2345-2355 (in Chinese).
    [22] 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1):59-71. MAN J, TANG B, DENG B, LI JH, HE YJ, ZHANG JL. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1):59-71 (in Chinese).
    [23] SCHWYN B, NEILANDS JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56.
    [24] 张晓波. 草地早熟禾根际促生菌(PGPR)特性及根际微生物区系研究[D]. 北京:北京林业大学博士学位论文, 2008. ZHANG XB. Study on microflora and characteristic of plant growth promoting rhizobacteria (PGPR) in rhizosphere of Kentucky bluegrass[D]. Beijing:Doctoral Dissertation of Beijing Forestry University, 2008 (in Chinese).
    [25] 刘长征, 姜晓琳, 蔡启忠, 周良云, 杨全. 何首乌根际促生菌的筛选及其对何首乌种子萌发的影响[J]. 中国中药杂志, 2021, 46(20):5247-5252. LIU CZ, JIANG XL, CAI QZ, ZHOU LY, YANG Q. Screening of plant growth-promoting rhizobacteria and its effect on seed germination of Polygonum multiflorum[J]. China Journal of Chinese Materia Medica, 2021, 46(20):5247-5252 (in Chinese).
    [26] 康宏, 郭艾琳, 马梦彪, 曹凤麟, 李胜贤, 杨光, 王靖然.产有机酸采油菌的筛选及产酸情况的分析[J]. 生物技术, 2011, 21(4):89-93. KANG H, GUO AL, MA MB, GAO FL, LI SX, YANG G, WANG JR. Screening of organic acid yielding strain and analysis of result of producing organic acid[J]. Biotechnology, 2011, 21(4):89-93 (in Chinese).
    [27] 沈萍, 陈向东. 微生物学[M]. 2版. 北京:高等教育出版社, 2006. SHEN P, CHEN XD. Microbiology[M]. Second Edition. Beijing:Higher Education Press, 2006 (in Chinese).
    [28] 柳鑫鹏, 臧淑英, 智刚, 渠凤甜. 盐碱土耐盐碱细菌筛选及其植物促生能力研究[J]. 土壤通报, 2022, 53(3):567-576. LIU XP, ZANG SY, ZHI G, QU FT. Isolation for plant-growth promoting halotolerant bacteria from alkali-saline soil[J]. Chinese Journal of Soil Science, 2022, 53(3):567-576 (in Chinese).
    [29] ZENG QW, WU XQ, WEN XY. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 and its plant growth-promoting effects on poplar seedlings[J]. Annals of Microbiology, 2017, 67(3):219-230.
    [30] 李章雷, 刘爽, 王艳宇, 周妍, 刘权, 殷奎德. 5株耐盐碱促生细菌的筛选鉴定及其对红小豆的促生作用[J]. 微生物学通报, 2021, 48(5):1580-1592. LI ZL, LIU S, WANG YY, ZHOU Y, LIU Q, YIN KD. Screening and identification of five saline-alkali tolerant bacteria for growth promotion of red adzuki bean[J]. Microbiology China, 2021, 48(5):1580-1592 (in Chinese).
    [31] GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796.
    [32] MAHESHWARI R, BHUTANI N, SUNEJA P. Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants[J]. Journal of Applied Biology and Biotechnology, 2019, 7(5):7-14.
    [33] PALANIAPPAN P, CHAUHAN PS, SARAVANAN VS, ANANDHAM R, SA TM. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp.[J]. Biology and Fertility of Soils, 2010, 46(8):807-816.
    [34] YOUSAF S, AFZAL M, REICHENAUER TG, BRADY CL, SESSITSCH A. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains[J]. Environmental Pollution, 2011, 159(10):2675-2683.
    [35] BENDAHA MEA, BELAOUNI HA. Effect of the endophytic plant growth promoting Enterobacter ludwigii EB4B on tomato growth[J]. Hellenic Plant Protection Journal, 2020, 13(2):54-65.
    [36] KAPOOR R, GUPTA MK, KUMAR N, KANWAR SS. Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii[J]. Rhizosphere, 2017, 4:62-69.
    [37] SAPRE S, GONTIA-MISHRA I, TIWARI S. Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum)[J]. Journal of Plant Growth Regulation, 2022, 41(2):647-656.
    [38] 许芳芳, 袁立敏, 邵玉芳, 范国花, 周心爱, 郑文玲, 李冬梅, 冯福应. 肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应[J]. 微生物学通报, 2018, 45(1):102-110. XU FF, YUAN LM, SHAO YF, FAN GH, ZHOU AX, ZHENG WL, LI DM, FENG FY. Effect of Enterobacter sp. FYP1101 on wheat seedling growth under salt stress[J]. Microbiology China, 2018, 45(1):102-110 (in Chinese).
    [39] WANG QF, LI Q, LIN Y, HOU Y, DENG ZY, LIU W, WANG HT, XIA ZM. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil[J]. Environmental Pollution, 2020, 264:114637.
    [40] WANG XY, CAI DB, JI MF, CHEN ZJ, YAO LG, HAN H. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach[J]. Science of the Total Environment, 2022, 819:153242.
    [41] 孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅,吴永娜,牛舒琪,索升州,李静,张金林. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5):1203-1215. SUN YY, CHEN J, WANG Y, CHENG JN, HAN QQ, ZHAO Q, LI HR, LI HP, HE AL, GOU JY, GOU AL, WU YN, NIU SQ, SUO SZ, LI J, ZHANG JL. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance[J]. Acta Agrestia Sinica, 2020, 28(5):1203-1215 (in Chinese).
    [42] KUMAR A, RAI LC. Soil organic carbon and phosphorus availability regulate abundance of culturable phosphate-solubilizing bacteria in paddy fields[J]. Pedosphere, 2020, 30(3):405-413.
    [43] 池景良, 郝敏, 王志学, 李杨. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1):1-7. CHI JL, HAO M, WANG ZX, LI Y. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1):1-7 (in Chinese).
    [44] PANICHIKKAL J, EDAYILEVEETIL KRISHNANKUTTY R. Rhizobacterial biofilm and plant growth promoting trait enhancement by organic acids and sugars[J]. Biofouling, 2020, 36(8):990-999.
    [45] MARRA LM, de OLIVEIRA-LONGATTI SM, SOARES CRFS, OLIVARES FL, MOREIRA FMDS. The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate[J]. Geomicrobiology Journal, 2019, 36(3):232-242.
    [46] SAHA M, SARKAR S, SARKAR B, SHARMA BK, BHATTACHARJEE S, TRIBEDI P. Microbial siderophores and their potential applications:a review[J]. Environmental Science and Pollution Research, 2016, 23(5):3984-3999.
    [47] CUI KP, XU T, CHEN JW, YANG HY, LIU XM, ZHUO R, PENG YH, TANG W, WANG R, CHEN LS, ZHANG X, ZHANG Z, HE ZI, WANG XN, LIU CX, CHEN YZ, ZHU YH. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation[J]. Journal of Cleaner Production, 2022, 367:133110.
    [48] 毛得奖, 朱亚玲, 韩宁. 假单胞菌铁载体及色素研 究[J]. 微生物学通报, 2013, 40(3):500-516. MAO DJ, ZHU YL, HAN N. Siderophores and pigments produced by Pseudomonas bacteria[J]. Microbiology China, 2013, 40(3):500-516 (in Chinese).
    [49] ADHIKARI A, LEE KE, KHAN MA, KANG SM, ADHIKARI B, IMRAN M, JAN R, KIM KM, LEE IJ. Effect of silicate and phosphate solubilizing rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under cadmium stress[J]. Journal of Microbiology and Biotechnology, 2020, 30(1):118-126.
    [50] JAN R, KHAN MA, ASAF S, LUBNA, LEE IJ, KIM KM. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones[J]. Plants:Basel, Switzerland, 2019, 8(10):363.
    [51] SCHALK IJ, HANNAUER M, BRAUD A. New roles for bacterial siderophores in metal transport and tolerance[J]. Environmental Microbiology, 2011, 13(11):2844-2854.
    [52] ROSKOVA Z, SKAROHLID R, MCGACHY L. Siderophores:an alternative bioremediation strategy?[J]. Science of the Total Environment, 2022, 819:153144.
    [53] 向君亮, 唐呈瑞, 王佳琦, 刘权, 张兴梅, 殷奎德. 盐碱胁迫下一株促进苜蓿生长的细菌筛选与鉴定[J]. 干旱地区农业研究, 2019, 37(2):266-272. XIANG JL, TANG CR, WANG JQ, LIU Q, ZHANG XM, YIN KD. Screening and identification of Medicago sativa Linn growth promoting rhizobacteria under saline-alkali stress[J]. Agricultural Research in the Arid Areas, 2019, 37(2):266-272 (in Chinese).
    [54] GROVER M, BODHANKAR S, SHARMA A, SHARMA P, SINGH J, NAIN L. PGPR mediated alterations in root traits:way toward sustainable crop production[J]. Frontiers in Sustainable Food Systems, 2021, 4:618230.
    引证文献
引用本文

黄臣,梁银萍,韩玲娟,高鹏,杨凯元,蒋霖,赵祥. 一株达乌里胡枝子耐盐碱内生细菌的鉴定和促生特性[J]. 微生物学通报, 2023, 50(1): 218-234

复制
分享
文章指标
  • 点击次数:318
  • 下载次数: 1022
  • HTML阅读次数: 986
  • 引用次数: 0
历史
  • 收稿日期:2022-07-21
  • 最后修改日期:2022-09-08
  • 在线发布日期: 2023-01-03
文章二维码