科微学术

微生物学通报

东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂过程的nce-miR-23928及其靶基因表达谱
作者:
基金项目:

国家自然科学基金面上项目(32172792);国家现代农业产业技术体系专项资助基金(CARS-44-KXJ7);福建农林大学硕士生导师团队项目(郭睿);福建农林大学杰出青年科研人才计划(xjq201814);福建农林大学动物科学学院(蜂学学院)科研扶持项目


Expression profiles of nce-miR-23928 and its target genes in the Nosema ceranae infection of Apis mellifera ligustica workers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】东方蜜蜂微孢子虫(Nosema ceranae)专性侵染成年蜜蜂中肠上皮细胞而导致的微孢子虫病给养蜂业造成严重损失。【目的】检测东方蜜蜂微孢子虫nce-miR-23928及其靶基因在侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为深入探究nce-miR-23928在东方蜜蜂微孢子虫侵染中的功能及调控机制提供依据。【方法】通过RNAhybrid、miRanda和TargetScan软件预测nce-miR-23928的靶基因。使用Blast工具将上述靶基因比对到基因本体论(gene ontology,GO)、京都基因和基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)、Nr和Swiss-Prot数据库以获得相应注释。采用实时荧光定量PCR(real time quantitative PCR,RT-qPCR)技术检测nce-miR-23928及其靶基因在东方蜜蜂微孢子虫侵染意蜂工蜂过程中的相对表达量。【结果】相较于接种后1d(1 day post infection,1dpi),nce-miR-23928的表达量在2dpi基本不变,而在4、6、8dpi均为显著下调(P<0.05),总体表现出下降的表达趋势。预测到nce-miR-23928的15个靶基因,分别有9、4、15和9条靶基因可注释到GO(3个条目)、KEGG(7条通路)、Nr和Swiss-Prot数据库。与1dpi相比,靶基因ABCT的表达量在2、4、6、8dpi皆显著下调;靶基因SPTK的表达量在4、6、8dpi均显著上调。【结论】明确nce-miR-23928及其靶基因ABCTSPTK在东方蜜蜂微孢子虫侵染意蜂工蜂过程中的动态表达规律,揭示nce-miR-23928通过正调控ABCT表达和负调控SPTK表达可能在东方蜜蜂微孢子虫的侵染过程中起调节作用。

    Abstract:

    [Background] Nosema ceranae exclusively infects midgut epithelial cells of adult bees, and the resulting microsporidiosis causes severe losses to the beekeeping industry. [Objective] This study aimed to determine the expression profiles of nce-miR-23928 and its target genes during the N. ceranae infection of Apis mellifera ligustica workers, and to provide basis for further investigation on the function and regulatory mechanism of nce-miR-23928 during the infection. [Methods] Target genes of nce-mir-23928 were predicted by RNAhybrid, miRanda and TargetScan. Blast was used to perform annotation of the aforementioned target genes in gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), Nr and Swissprot. Real time quantitative PCR (RT-qPCR) was employed to detect relative expression of nce-miR-23928 and its target genes. [Results] As compared with the condition at 1 day post infection (1 dpi), the expression of nce-miR-23928 remained unchanged at 2 dpi, but was all down-regulated at 4 6, 8 dpi (P <0.05), presenting an overall reduced expression trend. Additionally, 15 target genes of nce-miR-23928 were predicted, among which 9, 4, 15 and 9 were annotated in GO (3 items), KEGG (7 pathways), Nr and Swiss-prot, respectively. As compared with the condition at 1 dpi, the expression of target gene ABCT was significantly down-regulated at 2, 4, 6, 8 dpi, while the expression of target gene STPK was significantly up-regulated at 4, 6, 8 dpi, displaying an overall elevation trend. [Conclusion] These results illuminated the dynamic expression rules of nce-miR-23928 and its target genes ABCT and SPTK in the N. ceranae infection of A. mellifera ligustica workers, and unraveled that nce-miR-23928 putatively modulated the infection process through positively regulating the expression of ABCT and negatively regulating the expression of STPK.

    参考文献
    [1] 梁勤, 陈大福. 蜜蜂保护学[M]. 2版. 北京:中国农业出版社, 2009. LIANG Q, CHEN DF. Honeybee Protection[M]. Beijing:Chinese Agriculture Press, 2009 (in Chinese).
    [2] GOBLIRSCH M, HUANG ZY, SPIVAK M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection[J]. PLoS One, 2013, 8(3):e58165.
    [3] BURNHAM AJ. Scientific advances in controlling Nosema ceranae (microsporidia) infections in honey bees (Apis mellifera)[J]. Frontiers in Veterinary Science, 2019, 6:79.
    [4] LU TX, ROTHENBERG ME. MicroRNA[J]. Journal of Allergy and Clinical Immunology, 2018, 141(4):1202-1207.
    [5] XU L, HU YG, CAO Y, LI JR, MA LG, LI Y, QI YJ. An expression atlas of miRNAs in Arabidopsis thaliana[J]. Science China Life Sciences, 2018, 61(2):178-189.
    [6] CARTHEW RW, AGBU P, GIRI R. MicroRNA function in Drosophila melanogaster[J]. Seminars in Cell & Developmental Biology, 2017, 65:29-37.
    [7] ADL SM, SIMPSON AGB, LANE CE, LUKEŠ J, BASS D, BOWSER SS, BROWN MW, BURKI F, DUNTHORN M, HAMPL V, HEISS A, HOPPENRATH M, LARA E, le GALL L, LYNN DH, MCMANUS H, MITCHELL EA, MOZLEY-STANRIDGE SE, PARFREY LW, PAWLOWSKI J, et al. The revised classification of eukaryotes[J]. Journal of Eukaryotic Microbiology, 2012, 59(5):429-514.
    [8] HUANG Q, EVANS JD. Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae[J]. Journal of Invertebrate Pathology, 2016, 133:107-109.
    [9] SHAO SS, YAN WY, HUANG Q. Identification of novel miRNAs from the microsporidian parasite Nosema ceranae[J]. Infection, Genetics and Evolution, 2021, 93:104930.
    [10] 张文德, 赵浩东, 孙明会, 余岢骏, 郭意龙, 朱乐冉, 胡颖, 赵晓明, 叶亚萍, 陈大福, 郭睿. 东方蜜蜂微孢子虫孢子中微小RNA的鉴定与分析[J]. 昆虫学报, 2022(6):709-718. ZHANG WD, ZHAO HD, SUN MH, YU KJ, GUO YL, ZHU LR, HU Y, ZHAO XM, YE YP, CHEN DF, GUO R. Identification and analysis of microRNAs in Nosema ceranae spores[J]. Acta Entomologica Sinica, 2022(6):709-718 (in Chinese).
    [11] 吴鹰, 叶亚萍, 张佳欣, 钱加珺, 张文德, 余岢骏, 吉挺, 蔺哲广, 赵红霞, 陈大福, 郭睿. 东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂过程中nce-miR-12220及其靶基因的表达谱[J]. 菌物学报, 2022, 41(10):1546-1557. WU Y, YE YP, ZHANG JX, QIAN JJ, ZHANG WD, YU KJ, JI T, LIN ZG, ZHAO HX, CHEN DF, GUO R. Expression profiles of nce-miR-12220 and its target genes during the Nosema ceranae infection process of Apis mellifera ligustica workers[J]. Mycosystema, 2022, 41(10):1546-1557 (in Chinese).
    [12] CHEN DF, CHEN HZ, DU Y, ZHOU DD, GENG SH, WANG HP, WAN JQ, XIONG CL, ZHENG YZ, GUO R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection[J]. Insects, 2019, 10(8):245.
    [13] REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes[J]. RNA, 2004, 10(10):1507-1517.
    [14] BETEL D, WILSON M, GABOW A, MARKS DS, SANDER C. The microRNA.org resource:targets and expression[J]. Nucleic Acids Research, 2008, 36(suppl_1):D149-D153.
    [15] ALLEN E, XIE ZX, GUSTAFSON AM, CARRINGTON JC. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell, 2005, 121(2):207-221.
    [16] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods, 2001, 25(4):402-408.
    [17] 耿四海, 石彩云, 范小雪, 王杰, 祝智威, 蒋海宾, 范元婵, 陈华枝, 杜宇, 王心蕊, 郑燕珍, 付中民, 陈大福, 郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制[J]. 中国农业科学, 2020, 53(15):3187-3204. GENG SH, SHI CY, FAN XX, WANG J, ZHU ZW, JIANG HB, FAN YC, CHEN HZ, DU Y, WANG XR, ZHENG YZ, FU ZM, CHEN DF, GUO R. The mechanism underlying microRNAs-mediated Nosema ceranae infection to Apis mellifera ligustica worker[J]. Scientia Agricultura Sinica, 2020, 53(15):3187-3204 (in Chinese).
    [18] 范小雪, 杜宇, 张文德, 王杰, 蒋海宾, 范元婵, 冯睿蓉, 万洁琦, 周紫彧, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 参与调控意大利蜜蜂工蜂中肠基因表达的东方蜜蜂微孢子虫miRNA的组学解析及其调控网络[J]. 昆虫学报, 2021, 64(2):187-204. FAN XX, DU Y, ZHANG WD, WANG J, JIANG HB, FAN YC, FENG RR, WAN JQ, ZHOU ZY, XIONG CL, ZHENG YZ, CHEN DF, GUO R. Omics analysis of Nosema ceranae miRNAs involved in gene expression regulation in the midgut of Apis mellifera ligustica workers and their regulatory networks[J]. Acta Entomologica Sinica, 2021, 64(2):187-204 (in Chinese).
    [19] THEODOULOU FL, KERR ID. ABC transporter research:going strong 40 years on[J]. Biochemical Society Transactions, 2015, 43(5):1033-1040.
    [20] HUANG Q, WU ZH, LI WF, GUO R, XU JS, DANG XQ, MA ZG, CHEN YP, EVANS JD. Genome and evolutionary analysis of Nosema ceranae:a microsporidian parasite of honey bees[J]. Frontiers in Microbiology, 2021, 12:645353.
    [21] TSAOUSIS AD, KUNJI ERS, GOLDBERG AV, LUCOCQ JM, HIRT RP, EMBLEY TM. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi[J]. Nature, 2008, 453(7194):553-556.
    [22] PAN QL, WANG L, DANG XQ, MA ZG, ZHANG XY, CHEN SL, ZHOU ZY, XU JS. Bacterium-expressed dsRNA downregulates microsporidia Nosema bombycis gene expression[J]. The Journal of Eukaryotic Microbiology, 2017, 64(2):278-281.
    [23] CANOVA MJ, MOLLE V. Bacterial serine/threonine protein kinases in host-pathogen interactions[J]. The Journal of Biological Chemistry, 2014, 289(14):9473-9479.
    [24] JURIS SJ, RUDOLPH AE, HUDDLER D, ORTH K, DIXON JE. A distinctive role for the Yersinia protein kinase:actin binding, kinase activation, and cytoskeleton disruption[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17):9431-9436.
    [25] GROSDENT N, MARIDONNEAU-PARINI I, SORY MP, CORNELIS GR. Role of yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis[J]. Infection and Immunity, 2002, 70(8):4165-4176.
    [26] PREHNA G, IVANOV MI, BLISKA JB, STEBBINS CE. Yersinia virulence depends on mimicry of host rho-family nucleotide dissociation inhibitors[J]. Cell, 2006, 126(5):869-880.
    [27] HERVET E, CHARPENTIER X, VIANNEY A, LAZZARONI JC, GILBERT C, ATLAN D, DOUBLET P. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila[J]. Infection and Immunity, 2011, 79(5):1936-1950.
    [28] SAMARANAYAKE YH, SAMARANAYAKE LP, POW EH, BEENA VT, YEUNG KW. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cohort[J]. Journal of Clinical Microbiology, 2001, 39(9):3296-3302.
    [29] SARDIELLO M, PALMIERI M, di RONZA A, MEDINA DL, VALENZA M, GENNARINO VA, di MALTA C, DONAUDY F, EMBRIONE V, POLISHCHUK RS, BANFI S, PARENTI G, CATTANEO E, BALLABIO A. A gene network regulating lysosomal biogenesis and function[J]. Science, 2009, 325(5939):473-477.
    [30] 付中民, 陈华枝, 刘思亚, 祝智威, 范小雪, 范元婵, 万洁琦, 张璐, 熊翠玲, 徐国钧, 陈大福, 郭睿. 意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答[J]. 中国农业科学, 2019, 52(17):3069-3082. FU ZM, CHEN HZ, LIU SY, ZHU ZW, FAN XX, FAN YC, WAN JQ, ZHANG L, XIONG CL, XU GJ,CHEN DF, GUO R. Immune responses of Apis mellifera ligustia to Nosema ceranae stress[J]. Scientia Agricultura Sinica, 2019, 52(17):3069-3082 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张文德,胡颖,张凯遥,钱加,赵红霞,吉挺,蔺哲广,陈大福,郭睿. 东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂过程的nce-miR-23928及其靶基因表达谱[J]. 微生物学通报, 2023, 50(1): 185-193

复制
分享
文章指标
  • 点击次数:352
  • 下载次数: 830
  • HTML阅读次数: 775
  • 引用次数: 0
历史
  • 收稿日期:2022-04-24
  • 最后修改日期:2022-06-01
  • 在线发布日期: 2023-01-03
文章二维码