科微学术

微生物学通报

杀鱼假交替单胞菌C923几丁质酶基因PpchiC的克隆表达与酶学性质
作者:
基金项目:

国家自然科学基金(32072995);广东海洋大学创新强校专项资金项目(230419095);廉江市养虾集团有限公司委托项目(008)


Cloning expression and enzymatic properties of chitinase gene PpchiC from Pseudoalteromonas piscicida C923
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】某些假交替单胞菌可分泌几丁质酶,在降解利用几丁质为水产动物提供营养、免疫、抗病等方面有着重要潜力。【目的】克隆杀鱼假交替单胞菌(Pseudoalteromonas piscicida)C923的一个几丁质酶基因,实现其在大肠杆菌中的异源表达,并对重组几丁质酶的酶学性质进行研究。【方法】从菌株C923测序的基因组中注释到一个几丁质酶家族基因PpchiC,设计引物克隆该基因后进行生物信息学分析;构建载体进行异源表达并从温度、时间与诱导剂浓度进行表达优化;对表达蛋白进行最适温度与pH等酶学性质研究,同时比较了重组菌破碎后上清与沉淀及纯化的酶蛋白对几丁质的降解效应。【结果】基因PpchiC长1350bp,编码450个氨基酸,PpchiC蛋白理论分子量为48.76kDa,等电点为4.78,不稳定系数为29.08。结构域分析发现该蛋白含有一个类型Ⅲ几丁质结合域和一个糖苷水解酶18家族(glycosyl hydrolase 18,GH18)的催化域;PpchiC蛋白含有GH18家族几丁质酶的保守催化基序DxxDxDxE、YxR和[E/D]xx[V/I]。16℃、0.25mmol/L IPTG、诱导12h为其最优化表达条件,PpchiC在50℃、pH8.0时表现出最大酶活性;以胶体几丁质为底物时,PpchiC的Km值为2.58mg/mL、Vmax值为5.04mg/(mL·min)。降解结果表明,菌体的沉淀与上清及从上清中纯化的酶蛋白均有着较好的几丁质降解效应。【结论】杀鱼假交替单胞菌C923基因PpchiC编码GH18家族的几丁质酶,能被大肠杆菌高效表达且降解几丁质效应明显,这为PpchiC及菌株C923的应用提供了参考依据。

    Abstract:

    [Background] Some members of the genus Pseudoalteromonas can secrete a variety of chitinases, which play important roles in degrading chitin to provide nutrition, immunity, and disease prevention for aquatic animals. [Objective] To clone a chitinase gene of Pseudoalteromonas piscicida C923 and realize its heterologous expression in Escherichia coli, thereby exploring the enzymatic properties of the recombinant chitinase. [Methods] A potential gene PpchiC, identified and annotated as chitinase based on the analysis of the genome sequence of strain C923, was cloned by designing primers and subsequently subjected to bioinformatic analysis. Then an expression vector was constructed to conduct heterologous expression, and the expression was optimized from the temperature, time, and concentration of the inducer. The optimum temperature, pH of the expressed protein, and other enzymatic properties were studied. Finally, the degradation of chitin by the supernatant and precipitation of recombinant E. coli cells and the purified enzyme protein were compared. [Results] PpchiC was 1 350 bp in length and encoded 450 amino acids. The theoretical molecular mass of protein PpchiC was 48.76 kDa, and its isoelectric point and instability coefficient were 4.78 and 29.08, respectively. Structural analysis revealed that PpchiC contained a type III chitin-binding domain, a catalytic domain of glycosyl hydrolase 18 (GH18), and conserved motifs DxxDxDxE, YxR, and [E/D]xx[V/I]. The optimized expression conditions were 16 ℃ of temperature, induction time of 12 h, and IPTG concentration of 0.25 mmol/L. PpchiC showed maximum enzymatic activity at 50 ℃ and pH 8.0. When colloidal chitin was used as the substrate, the kinetic parameters K m and V max were 2.58 mg/mL and 5.04 mg/(mL·min), respectively. The results of degradation showed that the supernatant and precipitation of recombinant E. coli cells and the purified enzyme protein from the supernatant all exhibited excellent chitin degradation effects. [Conclusion] The gene PpchiC from P. piscicida C923 encodes a GH18 family chitinase, which can be highly expressed in E. coli with obvious chitin degradation effects. This study provides references for the application of Ppchic and C923 strain.

    参考文献
    [1] PATEL S, GOYAL A. Chitin and chitinase:role in pathogenicity, allergenicity and health[J]. International Journal of Biological Macromolecules, 2017, 97:331-338.
    [2] FOX CJ. The effect of dietary chitin on the growth, survival and chitinase levels in the digestive gland of juvenile Penaeus monodon (Fab.)[J]. Aquaculture, 1993, 109(1):39-49.
    [3] SHIAU SY, YU YP. Chitin but not chitosan supplementation enhances growth of grass shrimp, Penaeus monodon[J]. The Journal of Nutrition, 1998, 128(5):908-912.
    [4] KUMAR P, SAHU NP, SAHARAN N, REDDY AK, KUMAR S. Effect of dietary source and level of chitin on growth and survival of post-larvae Macrobrachium rosenbergii[J]. Journal of Applied Ichthyology, 2006, 22(5):363-368.
    [5] 刘兴旺. 甲壳动物碳水化合物利用研究进展[J]. 广东饲料, 2015, 24(1):42-44. LIU XW. Research progress on carbohydrate utilization of crustaceans[J]. Guangdong Feed, 2015, 24(1):42-44 (in Chinese).
    [6] NIU J, LI CH, TIAN LX, LIU YJ, CHEN X, WU KC, JUN W, HUANG Z, WANG Y, LIN HZ. Suitable dietary chitosan improves the growth performance, survival and immune function of tiger shrimp, Penaeus monodon[J]. Aquaculture Research, 2015, 46(7):1668-1678.
    [7] PORIA V, RANA A, KUMARI A, GREWAL J, PRANAW K, SINGH S. Current perspectives on chitinolytic enzymes and their agro-industrial applications[J]. Biology, 2021, 10(12):1319.
    [8] 赵沙, 颜子娟, 张舒, 余俊红, 吴秀芸, 王禄山. 细菌几丁质酶结构、功能及分子设计的研究进展[J]. 生物化学与生物物理进展, 2022, 49(7):1179-1191. ZHAO S, YAN ZJ, ZHANG S, YU JH, WU XY, WANG LS. Research progress on structure, function and molecular design of bacterial chitinase[J]. Progress in Biochemistry and Biophysics, 2022, 49(7):1179-1191 (in Chinese).
    [9] ITOH T, KIMOTO H. Bacterial chitinase system as a model of chitin biodegradation[J]. Advances in Experimental Medicine and Biology, 2019, 1142:131-151.
    [10] BOWMAN J. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas[J]. Marine Drugs, 2007, 5(4):220-241.
    [11] PAULSEN SS, STRUBE ML, BECH PK, GRAM L, SONNENSCHEIN EC. Marine chitinolytic Pseudoalteromonas represents an untapped reservoir of bioactive potential[J]. mSystems, 2019, 4(4):e00060-19.
    [12] YU M, TANG KH, LIU JW, SHI XC, GULDER TAM, ZHANG XH. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment[J]. BMC Genomics, 2013, 14:707.
    [13] MAKHDOUMI A, DEHGHANI-JOYBARI Z, MASHREGHI M, JAMIALAHMADI K, ASOODEH A. A novel halo-alkali-tolerant and thermo-tolerant chitinase from Pseudoalteromonas sp. DC14 isolated from the Caspian Sea[J]. International Journal of Environmental Science and Technology, 2015, 12(12):3895-3904.
    [14] WANG XH, CHI NY, BAI FW, DU YG, ZHAO Y, YIN H. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6[J]. Extremophiles, 2016, 20(2):167-176.
    [15] GARCÍA-FRAGA B, da SILVA AF, LÓPEZ-SEIJAS J, SIEIRO C. Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains[J]. Bioprocess and Biosystems Engineering, 2015, 38(12):2477-2486.
    [16] HOLT CC, BASS D, STENTIFORD GD, van der GIEZEN M. Understanding the role of the shrimp gut microbiome in health and disease[J]. Journal of Invertebrate Pathology, 2021, 186:107387.
    [17] TZUC JT, ESCALANTE DR, ROJAS HERRERA R, GAXIOLA CORTÉS G, ORTIZ MLA. Microbiota from Litopenaeus vannamei:digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei)[J]. SpringerPlus, 2014, 3(1):280.
    [18] GAO S, PAN LQ, HUANG F, SONG MS, TIAN CC, ZHANG MY. Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2019, 499:109-118.
    [19] 宁为民. 一株几丁质降解菌的分离鉴定、酶基因克隆表达及对凡纳对虾生长和肠道菌群影响[D]. 湛江:广东海洋大学硕士学位论文, 2021. NING WM. Isolation and identification of a chitin-degrading bacterium, cloning and expression of chitinase genes, and its effect on the growth and intestinal microbiota of Penaeus vannamei[D]. Zhanjiang:Master's Thesis of Guangdong Ocean University, 2021 (in Chinese)
    [20] 郑家敏, 梁燕辉, 朱凡, 叶秀云, 林娟. 几丁质酶基因的克隆表达及酶学性质[J]. 微生物学通报, 2018, 45(5):1027-1034. ZHENG JM, LIANG YH, ZHU F, YE XY, LIN J. Cloning, expression and characterization of the chitinase gene from Vibrio sp. GR52[J]. Microbiology China, 2018, 45(5):1027-1034 (in Chinese).
    [21] 王艳君. 海洋假交替单胞菌属细菌降解几丁质的特性及新型几丁质酶的表征[D]. 济南:山东大学博士学位论文, 2020. WANG YJ. Characterization of chitin degradation of Pseudoalteromonas and novel chitinases[D]. Jinan:Doctoral Dissertation of Shandong University, 2020 (in Chinese)
    [22] WATANABE T, ITO Y, YAMADA T, HASHIMOTO M, SEKINE S, TANAKA H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation[J]. Journal of Bacteriology, 1994, 176(15):4465-4472.
    [23] SYNSTAD B, GÅSEIDNES S, van AALTEN DMF, VRIEND G, NIELSEN JE, EIJSINK VGH. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase[J]. European Journal of Biochemistry, 2004, 271(2):253-262.
    [24] VAAJE-KOLSTAD G, HORN SJ, SØRLIE M, EIJSINK VGH. The chitinolytic machinery of Serratia marcescens-a model system for enzymatic degradation of recalcitrant polysaccharides[J]. The FEBS Journal, 2013, 280(13):3028-3049.
    [25] CHURKLAM W, AUNPAD R. Enzymatic characterization and structure-function relationship of two chitinases, LmChiA and LmChiB, from Listeria monocytogenes[J]. Heliyon, 2020, 6(7):e04252.
    [26] LI H, GREENE LH. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding[J]. PLoS One, 2010, 5(1):e8654.
    [27] 周维, 汤菊芬, 高增鸿, 甘桢, 简纪常, 吴灶和, 丁燏. 哈维氏弧菌qnr基因的克隆及原核表达条件优化[J]. 广东海洋大学学报, 2016, 36(1):93-97. ZHOU W, TANG JF, GAO ZH, GAN Z, JIAN JC, WU ZH, DING Y. Cloning and optimization of prokaryotic expression of quinolone resistance gene in Vibrio harveyi[J]. Journal of Guangdong Ocean University, 2016, 36(1):93-97 (in Chinese).
    [28] 张博阳, 朱天辉, 韩珊, 王莹, 李姝江, 谯天敏. 桑氏链霉菌几丁质酶ChiKJ40基因的克隆表达及其抑菌作用[J]. 微生物学通报, 2018, 45(5):1016-1026. ZHANG BY, ZHU TH, HAN S, WANG Y, LI SJ, QIAO TM. Cloning, expression and antibacterial functions of ChiKJ40, a chitinase gene from Streptomyces sampsonii[J]. Microbiology China, 2018, 45(5):1016-1026 (in Chinese).
    [29] QIN X, XIN YZ, SU XY, WANG XL, ZHANG J, TU T, WANG YR, YAO B, HUANG HQ, LUO HY. Heterologous expression and characterization of thermostable chitinase and β-N-acetylhexosaminidase from Caldicellulosiruptor acetigenus and their synergistic action on the bioconversion of chitin into N-acetyl-D[J]. International Journal of Biological Macromolecules, 2021, 192:250-257.
    [30] CLARK DJ, LAWRENCE AL, SWAKON DHD. Apparent chitin digestibility in penaeid shrimp[J]. Aquaculture, 1993, 109(1):51-57.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛家威,温崇庆,王玲,宁为民,戴思婷,薛明. 杀鱼假交替单胞菌C923几丁质酶基因PpchiC的克隆表达与酶学性质[J]. 微生物学通报, 2023, 50(1): 91-106

复制
分享
文章指标
  • 点击次数:471
  • 下载次数: 1100
  • HTML阅读次数: 1012
  • 引用次数: 0
历史
  • 收稿日期:2022-04-29
  • 最后修改日期:2022-09-12
  • 在线发布日期: 2023-01-03
文章二维码