科微学术

微生物学通报

长叶红砂叶际细菌和真菌群落对季节变化的响应特征
作者:
基金项目:

宁夏回族自治区重点研发计划(2019BEB04018);北方民族大学大学生创新创业训练计划(2021TDXM077);北方民族大学科研启动资助项目(2019KYQD30);国家自然科学基金(31960346)


Response of phyllosphere bacteria and fungi of Reaumuria trigyna to seasonal change
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】植物叶际(phyllosphere)定殖着丰富多样的微生物,叶际微生物通过发挥特定功能在逆境下生存,影响寄主植物的生理生态特性并受环境异质性的影响。【目的】植物叶际微生物群落是动态的,认识季节更替对植物叶际微生物群落结构的影响,对于加深对植物-微生物-环境相互作用的理解具有积极意义。【方法】以鄂尔多斯荒漠草原泌盐盐生植物长叶红砂为研究对象,分别测定春季、秋季植物叶片表面理化特性,并结合叶际细菌、真菌高通量测序结果进行综合分析。【结果】长叶红砂冠下土壤含水率、pH、电导率等指标在季节更替下存在显著差异,叶片表面Na+、K+和电导率值存在显著差异;进一步分析发现,叶际细菌分类操作单元(operational taxonomic unit,OTU)、Shannon、Chao1和Ace(abundance-based coverage estimator)指数与土壤和叶片表面盐分含量呈正相关;春季叶际蓝细菌门和拟杆菌门保持了较高的相对丰度,而秋季叶际变形菌门、放线菌门、子囊菌门的相对丰度则高于春季;其中,叶际BradyrhizobiumNovosphingobiumEdaphobaculum菌属与叶片表面盐分存在显著正相关,ModestobacterAdhaeribacterBacillus等菌属则与叶片表面盐分存在负相关。【结论】季节更替引发的长叶红砂冠下土壤水盐异步变化,增加了长叶红砂叶片表面盐分的积累,进一步影响了叶际微生物多样性和群落组成。本结果揭示了长叶红砂叶际细菌和真菌群落对季节变化的响应特征,为进一步阐明逆境下植物叶际微生物群落的组装策略提供理论参考。

    Abstract:

    [Background] Phyllosphere is home to various and abundant microorganisms. Thanks to the specific functions, phyllosphere microorganisms survive in the presence of stresses and they influence the physiological and ecological characteristics of host plants. In addition, they are affected by environmental heterogeneity. [Objective] The microbial community in plant phyllosphere is dynamic, and clarifying the effect of seasonal alternation on structure of the microbial community is of great significance for in-depth understanding of plant-microbe-environment interactions. [Methods] Reaumuria trigyna is a recretohalophyte in desert steppe in Ordos. We determined the physico-chemical properties of leaf surface and carried out high-throughput sequencing of phyllosphere bacteria and fungi in spring and autumn. [Results] The water content, pH, and electric conductivity of soil under the canopy of R. trigyna and the electric conductivity, Na+ content, and K+ content on leaf surface were significantly different between spring and autumn. The operational taxonomic units (OTUs), Shannon, Chao1 and ACE indices of phyllosphere bacteria were in positive correlation with salt content of soil and leaf surface. The relative abundance of Cyanobacteria and Bacteroidota was higher in spring, while the relative abundance of Proteobacteria, Actinobacteriota, and Ascomycota in autumn was higher than that in spring. Bradyrhizobium, Novosphingobium, and Edaphobaculum were in positive correlation with leaf surface salinity, while Modestobacter, Adhaeribacter, and Bacillus showed negative correlation. [Conclusion] The asynchronous change of water and salt in soil under the canopy of R. trigyna caused by seasonal alternation increased the accumulation of salt on the leaf surface of R. trigyna, further affecting the phyllosphere microbial diversity and community composition. This study reveals the response of phyllosphere bacteria and fungi of R. trigyna to seasonal alternation, which is expected to provide a theoretical reference for further elucidating the assembly strategies of phyllosphere microbial communities under stress.

    参考文献
    [1] Lindow SE, Brandl MT,[t5] LINDOW SE, BRANDL MT. Microbiology of the phyllosphere[J]. Applied and Environmental Microbiology, 2003, 69(4):1875-1883.
    [2] Knief C, Frances L, Vorholt JA. Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1[J]. Microbial Ecology, 2010, 60(2):440-452.
    [3] VORHOLT JA. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12):828-840.
    [4] VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, van AL, Dufresne A. The importance of the microbiome of the plant holobiont[J]. New Phytologist, 2015, 206(4):1196-1206.
    [5] HELFRICH EJN, VOGEL CM, UEOKA R, SCHÄFER M, RYFFEL F, MÜLLER DB, PROBST S, KREUZER M, PIEL J, VORHOLT JA. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome[J]. Nature Microbiology, 2018, 3(8):909-919.
    [6] 杨宽, 王慧玲, 叶坤浩, 王佩, 孟广云, 罗成, 郭力维. 叶际微生物及与植物互作的研究进展[J]. 云南农业大学学报(自然科学版), 2021, 36(1):155-164. YANG K, WANG HL, YE KH, WANG P, MENG GY, LUO C, GUO LW. Advances in research on phyllosphere microorganisms and their interaction with plants[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(1):155-164 (in Chinese).
    [7] SPAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews, 2007, 31(4):425-448.
    [8] VENKATACHALAM S, RANJAN K, PRASANNA R, RAMAKRISHNAN B, THAPA S, KANCHAN A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere[J]. Plant Biology, 2016, 18(4):627-637.
    [9] THAPA S, RANJAN K, RAMAKRISHNAN B, VELMOUROUGANE K, PRASANNA R. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome[J]. Journal of Basic Microbiology, 2018, 58(2):172-186.
    [10] DAR GH, BHAT RA, MEHMOOD MA, HAKEEM KR. Microbiota and Biofertilizers, Vol 2:Ecofriendly Tools for Reclamation of Degraded Soil Environs[M]. Cham:Springer International Publishing, 2021.
    [11] STANTON DE, BATTERMAN SA, von FISCHER JC, HEDIN LO. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum[J]. Ecology, 2019, 100(9):e02795.
    [12] ABADI VAJM, SEPEHRI M, RAHMANI HA, ZAREI M, RONAGHI A, TAGHAVI SM, SHAMSHIRIPOUR M. Role of dominant phyllosphere bacteria with plant growth-promoting characteristics on growth and nutrition of maize (Zea mays L.)[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4):2348-2363.
    [13] QIAN X, LI SC, WU BW, WANG YL, JI NN, YAO H, CAI HY, SHI MM, ZHANG DX. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure[J]. Scientific Reports, 2020, 10:952-966.
    [14] BAO LJ, GU LK, SUN B, CAI WY, ZHANG SW, ZHUANG GQ, BAI ZH, ZHUANG XL. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis[J]. FEMS Microbiology Ecology, 2020, 96(3):fiaa017.
    [15] 高爽, 刘笑尘, 董铮, 刘茂炎, 戴良英. 叶际微生物及其与外界互作的研究进展[J]. 植物科学学报, 2016, 34(4):654-661. GAO S, LIU XC, DONG Z, LIU MY, DAI LY. Advance of phyllosphere microorganisms and their interaction with the outside environment[J]. Plant Science Journal, 2016, 34(4):654-661 (in Chinese).
    [16] RASTOGI G, SBODIO A, TECH JJ, SUSLOW TV, COAKER GL, LEVEAU JHJ. Leaf microbiota in an agroecosystem:spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. The ISME Journal, 2012, 6(10):1812-1822.
    [17] CORDIER T, ROBIN C, CAPDEVIELLE X, DESPREZ-LOUSTAU ML, VACHER C. Spatial variability of phyllosphere fungal assemblages:genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica)[J]. Fungal Ecology, 2012, 5(5):509-520.
    [18] PEÑUELAS J, RICO L, OGAYA R, JUMP AS, TERRADAS J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest[J]. Plant Biology:Stuttgart, Germany, 2012, 14(4):565-575.
    [19] MATERATSKI P, VARANDA C, CARVALHO T, DIAS AB, CAMPOS MD, REI F, FÉLIX MDR. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars[J]. Fungal Biology, 2019, 123(1):66-76.
    [20] BEATTIE GA. Water relations in the interaction of foliar bacterial pathogens with plants[J]. Annual Review of Phytopathology, 2011, 49:533-555.
    [21] JOUNG YS, GE ZF, BUIE CR. Bioaerosol generation by raindrops on soil[J]. Nature Communications, 2017, 8:14668.
    [22] REDFORD AJ, FIERER N. Bacterial succession on the leaf surface:a novel system for studying successional dynamics[J]. Microbial Ecology, 2009, 58(1):189-198.
    [23] IBEKWE AM, ORS S, FERREIRA JFS, LIU X, SUAREZ DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage[J]. PLoS One, 2021, 16(6):e0252242.
    [24] KIM M, SINGH D, LAI-HOE A, GO R, RAHIM RA, AINUDDIN AN, CHUN J, ADAMS JM. Distinctive phyllosphere bacterial communities in tropical trees[J]. Microbial Ecology, 2012, 63(3):674-681.
    [25] KEMBEL SW, O'CONNOR TK, ARNOLD HK, HUBBELL SP, WRIGHT SJ, GREEN JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(38):13715-13720.
    [26] KEMBEL SW, MUELLER RC. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities[J]. Botany, 2014, 92(4):303-311.
    [27] 刘瑞香, 靳凯, 马迎梅, 陈士超, 米艳杰. 额济纳荒漠红砂泌盐特征的研究[J]. 中国草地学报, 2021, 43(5):75-81. LIU RX, JIN K, MA YM, CHEN SC, MI YJ. Study on salt secretion characteristics of Reaumuria soongorica in Ejina desert[J]. Chinese Journal of Grassland, 2021, 43(5):75-81 (in Chinese).
    [28] 薛焱, 王迎春. 盐生植物长叶红砂泌盐特性的研究[J]. 中国沙漠, 2008(3):437-442, 602. XUE Y, WANG YC. Study on characters of ions secretion from Reaumuria trigyna[J]. Journal of Desert Research, 2008(3):437-442, 602 (in Chinese).
    [29] PAN YQ, GUO H, WANG SM, ZHAO BY, ZHANG JL, MA Q, YIN HJ, BAO AK. The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity[J]. Frontiers in Plant Science, 2016, 7:848.
    [30] 乌吉斯古冷, 康鹏, 胡金鹏, 潘雅清, 周月, 马蓉, 彭伊扬, 刘建利. 荒漠植物黑沙蒿嫩枝与成熟枝内生菌群落结构差异[J]. 微生物学通报, 2022, 49(2):569-582. WUJISIGULENG, KANG P, HU JP, PAN YQ, ZHOU Y, MA R, PENG YY, LIU JL. Difference in endophyte community structure between young and mature branches of Artemisia ordosica[J]. Microbiology China, 2022, 49(2):569-582 (in Chinese).
    [31] EDGAR RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998.
    [32] KANG P, PAN YQ, YANG P, HU JP, ZHAO TL, ZHANG YQ, DING XD, YAN XF. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches[J]. Frontiers in Microbiology, 2022, 13:101877.
    [33] ZIEGLER M, SENECA FO, YUM LK, PALUMBI SR, VOOLSTRA CR. Bacterial community dynamics are linked to patterns of coral heat tolerance[J]. Nature Communications, 2017, 8:14213.
    [34] PAN YQ, KANG P, HU JP, SONG NP. Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh[J]. Science of the Total Environment, 2021, 798:149118.
    [35] NING DL, YUAN MT, WU LW, ZHANG Y, GUO X, ZHOU XS, YANG YF, ARKIN AP, FIRESTONE MK, ZHOU JZ. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming[J]. Nature Communications, 2020, 11:4717.
    [36] LIU M, LIU GH, WU X, WANG H, CHEN L. Vegetation traits and soil properties in response to utilization patterns of grassland in Hulun Buir city, Inner Mongolia, China[J]. Chinese Geographical Science, 2014, 24(4):471-478.
    [37] ZHANG NL, WAN SQ, GUO JX, HAN GD, GUTKNECHT J, SCHMID B, YU L, LIU WX, BI J, WANG Z, MA KP.[t6] Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biology and Biochemistry, 2015, 89:12-23.
    [38] MI P, YUAN F, GUO J, HAN G, WANG B. Salt glands play a pivotal role in the salt resistance of four recretohalophyte Limonium Mill. species[J]. Plant Biology:Stuttgart, Germany, 2021, 23(6):1063-1073.
    [39] DU C, MA BJ, WU ZG, LI NN, ZHENG LL, WANG YC. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants[J]. Journal of Plant Physiology, 2019, 239:38-51.
    [40] 薛焱, 王迎春, 王同智. 濒危植物长叶红砂适应盐胁迫的生理生化机制研究[J]. 西北植物学报, 2012, 32(1):136-142. XUE Y, WANG YC, WANG TZ. Physiological and biochemical mechanisms of an endemic halophyte Reaumuria trigyna Maxim. under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1):136-142 (in Chinese).
    [41] STONE B, Weingarten E. The role of the phyllosphere microbiome in plant health and function[J]. Annual Plant Reviews, 2018, 1(2):53.
    [42] DIAS NS, FERREIRA JFS, LIU X, SUAREZ DL. Jerusalem artichoke (Helianthus tuberosus L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters[J]. Industrial Crops and Products, 2016, 94:1009-1024.
    [43] GURON GKP, ARANGO-ARGOTY G, ZHANG LQ, PRUDEN A, PONDER MA. Effects of dairy manure-based amendments and soil texture on lettuce-and radish-associated microbiota and resistomes[J]. mSphere, 2019, 4(3):e00239-e00219.
    [44] ANDREWS JH, HARRIS RF. The ecology and biogeography of microorganisms on plant surfaces[J]. Annual Review of Phytopathology, 2000, 38:145-180.
    [45] WILLIAMS TR, MOYNE AL, HARRIS LJ, MARCO ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere[J]. PLoS One, 2013, 8(7):e68642.
    [46] MARK IBEKWE A, ORS S, FERREIRA JFS, LIU X, SUAREZ DL. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought[J]. Science of the Total Environment, 2017, 579:1485-1495.
    [47] FROELICH BA, WILLIAMS TC, NOBLE RT, OLIVER JD. Apparent loss of Vibrio vulnificus from north Carolina oysters coincides with a drought-induced increase in salinity[J]. Applied and Environmental Microbiology, 2012, 78(11):3885-3889.
    [48] FINKEL OM, DELMONT TO, POST AF, BELKIN S. Metagenomic signatures of bacterial adaptation to life in the phyllosphere of a salt-secreting desert tree[J]. Applied and Environmental Microbiology, 2016, 82(9):2854-2861.
    [49] REISBERG EE, HILDEBRANDT U, RIEDERER M, HENTSCHEL U. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves[J]. PLoS One, 2013, 8(11):e78613.
    [50] DURAND A, MAILLARD F, ALVAREZ-LOPEZ V, GUINCHARD S, BERTHEAU C, VALOT B, BLAUDEZ D, CHALOT M. Bacterial diversity associated with poplar trees grown on a Hg-contaminated site:community characterization and isolation of Hg-resistant plant growth-promoting bacteria[J]. Science of the Total Environment, 2018, 622/623:1165-1177.
    [51] CARVALHO CR, DIAS AC, HOMMA SK, CARDOSO EJ. Phyllosphere bacterial assembly in citrus crop under conventional and ecological management[J]. PeerJ, 2020, 8:e9152.
    [52] 孙泓, 李慧, 詹亚光, 李杨. 不同生境中桂花和夹竹桃叶际细菌的群落结构[J]. 应用生态学报, 2018, 29(5):1653-1659. SUN H, LI H, ZHAN YG, LI Y. Phyllosphere bacterial community structure of Osmanthus fragrans and Nerium indicum in different habitats[J]. Chinese Journal of Applied Ecology, 2018, 29(5):1653-1659 (in Chinese).
    [53] KATSOULA A, VASILEIADIS S, KARAMANOLI K, VOKOU D, KARPOUZAS DG. Factors structuring the epiphytic archaeal and fungal communities in a semi-arid Mediterranean ecosystem[J]. Microbial Ecology, 2021, 82(3):638-651.
    [54] XING L, YANG JL, JIA YH, HU X, LIU Y, XU H, YIN HQ, LI J, YI ZX. Effects of ecological environment and host genotype on the phyllosphere bacterial communities of cigar tobacco (Nicotiana tabacum L.)[J]. Ecology and Evolution, 2021, 11(16):10892-10903.
    [55] MÜLLER T, BEHRENDT U, RUPPEL S, von der WAYDBRINK G, MÜLLER MEH. Fluorescent pseudomonads in the phyllosphere of wheat:potential antagonists against fungal phytopathogens[J]. Current Microbiology, 2016, 72(4):383-389.
    [56] QIN Y, PAN XY, YUAN ZL. Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides[J]. Fungal Ecology, 2016, 24:53-60.
    [57] 沙小玲, 梁胜贤, 庄绪亮, 韩庆莉, 白志辉. 植物叶际固氮菌研究进展[J]. 微生物学通报, 2017, 44(10):2443-2451. SHA XL, LIANG SX, ZHUANG XL, HAN QL, BAI ZH. Nitrogen-fixing bacteria in the phyllosphere[J]. Microbiology China, 2017, 44(10):2443-2451 (in Chinese).
    [58] ABRIL AB, TORRES PA, BUCHER EH. The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland[J]. Journal of Tropical Ecology, 2005, 21(1):103-107.
    [59] BENTLEY BL. Nitrogen fixation by epiphylls in a tropical rainforest[J]. Annals of the Missouri Botanical Garden, 1987, 74(2):234.
    [60] FREIBERG E. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest[J]. Oecologia, 1998, 117(1):9-18.
    [61] KUMAR V, SINGH P, JORQUERA MA, SANGWAN P, KUMAR P, VERMA AK, AGRAWAL S. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea)[J]. World Journal of Microbiology and Biotechnology, 2013, 29(8):1361-1369.
    [62] VERMA P, YADAV A, KAZY S. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India[J]. International Journal of Current Microbiology and Applied Sciences, 2014, 3(5):432-447.
    [63] de SOUZA R, BENEDUZI A, AMBROSINI A, da COSTA PB, MEYER J, VARGAS LK, SCHOENFELD R, PASSAGLIA LMP. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields[J]. Plant and Soil, 2013, 366(1):585-603.
    [64] 王洋, 刘超, 高静, 刘志强, 王根轩. 叶际微生物诱发气孔免疫的机制及其应用前景[J]. 植物学报, 2013, 48(6):658-664. WANG Y, LIU C, GAO J, LIU ZQ, WANG GX. Mechanism and application prospects of plant stomatal immunity induced by phyllosphere microbes[J]. Chinese Bulletin of Botany, 2013, 48(6):658-664 (in Chinese).
    [65] ORTEGA RA, MAHNERT A, BERG C, MÜLLER H, BERG G. The plant is crucial:specific composition and function of the phyllosphere microbiome of indoor ornamentals[J]. FEMS Microbiology Ecology, 2016, 92(12):fiw173.
    [66] OLIVERA NL, NIEVAS ML, LOZADA M, del PRADO G, DIONISI HM, SIÑERIZ F. Isolation and characterization of biosurfactant-producing Alcanivorax strains:hydrocarbon accession strategies and alkane hydroxylase gene analysis[J]. Research in Microbiology, 2009, 160(1):19-26.
    [67] DENG BQ, LI W, LU HJ, ZHU LZ. Film mulching reduces antibiotic resistance genes in the phyllosphere of lettuce[J]. Journal of Environmental Sciences:China, 2022, 112:121-128.
    [68] HIRANO SS, UPPER CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3):624-653.
    [69] SCHREIBER L, KRIMM U, KNOLL D. Interactions between epiphyllic microorganisms and leaf cuticles[A]//Plant Surface Microbiology[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2004:145-156.
    [70] ALSANIUS BW, VAAS L, GHARAIE S, KARLSSON ME, ROSBERG AK, WOHANKA W, KHALIL S, WINDSTAM S. Dining in blue light impairs the appetite of some leaf epiphytes[J]. Frontiers in Microbiology, 2021, 12:725021.
    [71] PAPIZADEH M, WIJAYAWARDENE NN, AMOOZEGAR MA, SABA F, FAZELI SAS, HYDE KD. Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus[J]. Mycological Progress, 2018, 17(5):661-679.
    [72] GONÇALVES M. Three new species of Neocamarosporium isolated from saline environments: N. aestuarinum sp. nov., N. endophyticum sp. nov. and N. halimiones sp. nov[J]. Mycosphere, 2019, 10(1):608-621.
    [73] BAATI H, AMDOUNI R, GHARSALLAH N, SGHIR A, AMMAR E. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern[J]. Current Microbiology, 2010, 60(3):157-161.
    [74] PHOOKAMSAK R, WANASINGHE DN, HONGSANAN S, PHUKHAMSAKDA C, HUANG SK, TENNAKOON DS, NORPHANPHOUN C, CAMPORESI E, BULGAKOV TS, PROMPUTTHA I, MORTIMER PE, XU JC, HYDE KD. Towards a natural classification of Ophiobolus and Ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales)[J]. Fungal Diversity, 2017, 87(1):299-339.
    [75] CAO M, HUANG J, LI JX, QIAO ZX, WANG GJ. Edaphobaculum flavum gen. nov., sp. nov., a member of family Chitinophagaceae, isolated from grassland soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(11):4475-4481.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乌吉斯古冷,潘雅清,胡金鹏,张亚琪,李斌,刘建利,康鹏. 长叶红砂叶际细菌和真菌群落对季节变化的响应特征[J]. 微生物学通报, 2023, 50(1): 48-63

复制
分享
文章指标
  • 点击次数:426
  • 下载次数: 1023
  • HTML阅读次数: 833
  • 引用次数: 0
历史
  • 收稿日期:2022-04-12
  • 最后修改日期:2022-07-21
  • 在线发布日期: 2023-01-03
文章二维码