科微学术

微生物学通报

甘肃白银铜矿矿坑土壤细菌和古菌的多样性及坡度分布特征
作者:
基金项目:

中央支持地方高校改革发展资金人才培养支持计划项目(HFBE[2019]465)


Diversity and slope distribution of bacteria and archaea in the soil of Baiyin Copper Mine pit from Gansu Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】甘肃白银铜矿作为西部地区的重要矿区,探究其细菌和古菌多样性及坡度分布特征对明确矿区微生物多样性分布具有关键意义。【目的】通过分析白银铜矿矿坑不同坡度的土壤细菌群落多样性和古菌群落多样性,探究不同坡度土壤样品细菌及古菌多样性与理化性质之间的关系。【方法】以不同坡度的白银铜矿土样为材料,采用Illumina HiSeq测序技术,分析样品的细菌多样性和古菌多样性。【结果】α和β多样性分析表明,ACE、Chao1、Shannon和Simpson等多样性指数在样品间存在显著差异。白银铜矿矿坑土壤的细菌排名前十的纲是GammaproteobacteriaOxyphotobacteriaAlphaproteobacteriaBacteroidiaActinobacteriaClostridiaNitrospiraBacilliMollicutesAcidimicrobiia,相对丰度最高的是Gammaproteobacteria。在纲水平上,白银铜矿的古菌由ThermoplasmataNitrososphaeriaMethanomicrobiaHalobacteriaMethanobacteria、Group_1.1c和Bathyarchaeia组成,相对丰度最高的是Thermoplasmata。冗余分析(redundancy analysis,RDA)得出,pH和速效磷是影响土壤多样性的最重要因素。【结论】白银铜矿为强酸性铜矿,其土壤铜离子含量最高。从坡顶到坡底,pH呈现先降低再升高的趋势(2.18-4.75),铜离子(20-150mg/kg)和总铁(2.5-50mg/kg)呈现先升高后降低的趋势,铵态氮(3.61-44.90mg/kg)、速效磷(0-56.79mg/kg)和速效钾(9.07-35.65mg/kg)含量低且呈现波动趋势,硫化物(1mg/kg)无明显变化。白银铜矿矿坑土壤细菌相对丰度最高的属为Acidithiobacillus,古菌相对丰度较高的属为uncultured_bacterium_f_Ferroplasmaceae和uncultured_bacterium_f_Nitrososphaeraceae。其中,细菌多样性受到pH驱动,古菌多样性受到速效磷的驱动。本研究有助于我们进一步了解白银铜矿土壤微生物群落的变化。

    Abstract:

    [Background] Gansu Baiyin Copper Mine is an important mining area in western China. It is of great significance to explore the diversity and slope distribution of bacteria and archaea in the area. [Objective] To analyze the community diversity of bacteria and archaea in soil samples at different slopes of Baiyin Copper Mine pit and further the relationship between the diversity and physico-chemical properties of soils. [Methods] Illumina HiSeq was employed to elucidate the diversity of bacteria and archaea in soil samples at different slopes of the pit. [Results] Alpha and beta diversity indices of ACE index, Chao1 index, Shannon index, and Simpson index showed significantly different among samples. The top ten classes of bacteria in the pit included Gammaproteobacteria, Oxyphotobacteria, Alphaproteobacteria, Bacteroidia, Actinobacteria, Clostridia, Nitrospira, Bacilli, Mollicutes, and Acidimicrobiia, among which Gammaproteobacteria was most abundant. At the class level, the archaea of the pit were composed of Thermoplasmata, Nitrososphaeria, Methanomicrobia, Halobacteria, Methanobacteria, Group_1.1c, and Bathyarchaeia, and the abundance of Thermoplasmata was the highest. Redundancy analysis (RDA) suggested that pH and available phosphorus were the major factors affecting soil diversity. [Conclusion] Baiyin Copper Mine is a strong acid mine. The content of copper ions was the highest in soil of Baiyin Copper Mine pit. The pit registered the pH trend of first decreasing and then increasing (2.18-4.75), trends of copper ions (20-150 mg/kg) and total iron (2.5-50 mg/kg) opposite to pH, low contents of ammonium nitrogen (3.61-44.90 mg/kg), available phosphorus (0-56.79 mg/kg), and available potassium (9.07-35.65 mg/kg) with fluctuation, and no obvious variation of sulfide (1 mg/kg) from the surface to the bottom. At the genus level, Acidithiobacillus was most abundant among the bacteria, while the counterparts for archaea were uncultured_bacterium_ f_Ferroplasmaceae and uncultured_bacterium_ f_ Nitrososphaeraceae. pH and available phosphorus were the main factors causing the variation of bacterial and archaeal diversity, respectively. This study is expected to deepen the understanding of changes in soil microbial communities in Baiyin Copper Mine.

    参考文献
    [1] 董凯. 甘肃白银厂铜矿成岩——成矿环境及其找矿意义[D]. 武汉:中国地质大学博士学位论文, 2018. Dong K. Petrogenic, metallogenetic environment and its exploration significance in baiyinchang copper deposit, Gansu Province[D]. Wuhan:Doctoral Dissertation of China University of Geosciences, 2018 (in Chinese).
    [2] 蒋坤. 白银厂铜矿床地质特征[J]. 中国西部科技, 2010, 9(35):21-23. JIANG K. The geological characteristics of baiyinchang copper deposit[J]. Science and Technology of West China, 2010, 9(35):21-23 (in Chinese).
    [3] 余江鸿, 王进龙, 张析, 王军. 白银露天剥离硫化铜矿微生物堆浸工业试验研究[J]. 世界有色金属, 2017(7):226-228. YU JH, WANG JL, ZHANG X, WANG J. Research on normal temperature bacteria heap leaching of Baiyin copper sulfide dump[J]. World Nonferrous Metals, 2017(7):226-228 (in Chinese).
    [4] 李梦杰. 重金属污染矿区微生物多样性分析[D]. 西安:西安建筑科技大学硕士学位论文, 2016. LI MJ. Microbial diversity in mine environment with metal pollution[D]. Xi'an:Master's Thesis of Xi'an University of Architecture and Technology, 2016 (in Chinese).
    [5] SIBANDA T, SELVARAJAN R, MSAGATI T, VENKATACHALAM S, MEDDOWS-TAYLOR S. Defunct gold mine tailings are natural reservoir for unique bacterial communities revealed by high-throughput sequencing analysis[J]. Science of the Total Environment, 2019, 650(Pt 2):2199-2209.
    [6] 卢虎, 姚拓, 李建宏, 马文彬, 柴晓虹. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究[J]. 草业学报, 2015, 24(5):34-43. LU H, YAO T, LI JH, MA WB, CHAI XH. Vegetation and soil microorganism characteristics of degraded grasslands[J]. Acta Prataculturae Sinica, 2015, 24(5):34-43 (in Chinese).
    [7] FUKE P, THANGARAJU MM, KUMAR M, SAWARKAR AD, PANDEY A, SINGH L. Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo:a review[J]. Industrial Crops and Products, 2021, 167:113567.
    [8] DONG L, LI JJ, SUN J, YANG C. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau[J]. Scientific Reports, 2021, 11:11538.
    [9] ZHENG Q, HU YT, ZHANG SS, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, WANEK W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J]. Soil Biology & Biochemistry, 2019, 136:107521.
    [10] BADANO EI, CAVIERES LA, MOLINA-MONTENEGRO MA, QUITOZ CL. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile[J]. Journal of Arid Environments, 2005, 62(1):93-108.
    [11] 袁红朝, 吴昊, 葛体达, 李科林, 吴金水, 王久荣. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(6):1807-1813. YUAN HZ, WU H, GE TD, LI KL, WU JS, WANG JR. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1807-1813 (in Chinese).
    [12] ZHAO HW, LI QL, JIN XT, LI D, ZHU ZQ, LI QX. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms[J]. Science of the Total Environment, 2021, 797:148942.
    [13] SICZEK A, FRAC M, GRYTA A. Forecrop effects on abundance and diversity of soil microorganisms during the growth of the subsequent crop[J]. Agronomy, 2020, 10(12):1971.
    [14] 彭玙萍, 曾伟民. 紫金山铜矿酸性矿山废水微生物群落多样性[J]. 微生物学通报, 2020, 47(9):2887-2896. PENG YP, ZENG WM. Diversity of microbial community in acid mine drainage from Zijinshan copper mine[J]. Microbiology China, 2020, 47(9):2887-2896 (in Chinese).
    [15] SAJJAD W, ZHENG GD, MA XX, RAFIQ M, IRFAN M, XU W, ALI B. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction[J]. Journal of Basic Microbiology, 2019, 59(3):323-336.
    [16] LI JY, CHEN QF, LI Q, ZHAO CS, FENG Y. Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland, China[J]. Chemosphere, 2021, 274:129967.
    [17] YANG KN, LUO SW, HU LG, CHEN BB, XIE Z, MA BB, MA WB, DU GZ, MA XJ, LE ROUX X. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization:relationships with soil. environmental variables and plant community diversity[J]. Soil Biology and Biochemistry, 2020, 145:107795.
    [18] 许彦, 罗丰, 许如意, 任红. 三亚地区农业土壤pH值测定方法初探[J]. 长江蔬菜, 2011(24):50-51. XU Y, LUO F, XU RY, REN H. Research on determination methods for pH value of agricultural soil in Sanya district[J]. Journal of Changjiang Vegetables, 2011(24):50-51 (in Chinese).
    [19] 丁成翔. 西部旱区紫花苜蓿地土壤微生物群落结构和多样性分析[J]. 青海畜牧兽医杂志, 2021, 51(5):28-34, 42. DING CX. Analysis on soil microbial community and diversity of alfalfa cultivation area in western arid area[J]. Chinese Qinghai Journal of Animlution on soil physicochemical properties and microbial diversity over d杩硦fe乲奥轮汴瀠屲罥屣佬卡汭佡硴汩卯繮茠她桥恡卲关丠獩塮嘠孡瘠兣籯pper 奴幡i鹬齩汮內乳儠坤奡孭硛塊孝伮謠敊ournal of Soil and Water Conservation, 2019, 74(5):439-448.their relationship to environmental factors in volcanoes and waterbodies of Wudalianchi volcanic group[D]. Daqing:Master's Thesis of Heilongjiang Bayi Agricultural University, 2020 (in Chinese).
    [21] FENG HL, GUO JH, WANG WF, SONG XZ, YU SQ. Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation[J]. Forests, 2019, 10(7):550.
    [22] CHU HY, XIANG XJ, YANG J, ADAMS JM, ZHANG KP, LI YT, SHI Y. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China[J]. Pedosphere, 2016, 26(2):226-234.
    [23] RILLIG MC, MUMMEY DL. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171(1):41-53.
    [24] van der HEIJDEN MGA, BARDGETT RD, van STRAALEN NM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3):296-310.
    [25] EILERS KG, DEBENPORT S, ANDERSON S, FIERER N. Digging deeper to find unique microbial communities:the strong effect of depth on the structure of bacterial and archaeal communities in soil[J]. Soil Biology and Biochemistry, 2012, 50:58-65.
    [26] SHEN CC, XIONG JB, ZHANG HY, FENG YZ, LIN XG, LI XY, LIANG WJ, CHU HY. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57:204-211.
    [27] FIERER N, JACKSON RB. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3):626-631.
    [28] BAKER KL, LANGENHEDER S, NICOL GW, RICKETTS D, KILLHAM K, CAMPBELL CD, PROSSER JI. Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies[J]. Soil Biology and Biochemistry, 2009, 41(11):2292-2298.
    [29] 刘佳晨, 刘金辉, 徐玲玲, 周义朋, 文旭祥. 生物浸矿微生物群落结构研究进展[J]. 稀有金属, 2021, 45(10):1258-1268. LIU JC, LIU JH, XU LL, ZHOU YP, WEN XX. Recent research advances on microbial community structure in bioleaching[J]. Chinese Journal of Rare Metals, 2021, 45(10):1258-1268 (in Chinese).
    [30] 石丽娟. 基于pH刺激的浸矿微生物群落结构及种群动态研究[D]. 长沙:中南大学硕士学位论文, 2014. SHI LJ. The structure and dynamics of microbial community during bioleaching under pH stimulation[D]. Changsha:Master's Thesis of Central South University, 2014 (in Chinese).
    [31] 郑红艾. 硫化矿生物浸出过程的氧化机理及生物多样性研究[D]. 上海:东华大学博士学位论文, 2015. ZHENG HA. Study on the bioleaching mechanism and biodiversity of sulfide ore[D]. Shanghai:Doctoral Dissertation of Donghua University, 2015 (in Chinese).
    [32] 刘莎, 李俊成, 杨毅然. 嗜酸嗜热浸矿微生物[J]. 基因组学与应用生物学, 2018, 37(12):5355-5359. LIU S, LI JC, YANG YR. Acidophilic and thermophilic leaching microorganisms[J]. Genomics and Applied Biology, 2018, 37(12):5355-5359 (in Chinese).
    [33] SRIAPORN C, CAMPBELL KA, van KRANENDONK MJ, HANDLEY KM. Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs[J]. Microbiome, 2021, 9(1):135.
    [34] DOMINGUES VS, de SOUZA MONTEIRO A, JULIO ADL, QUEIROZ ALL, dos SANTOS VL. Diversity of metal-resistant and tensoactive-producing culturable heterotrophic bacteria isolated from a copper mine in Brazilian Amazonia[J]. Scientific Reports, 2020, 10:6171.
    [35] 谢学辉, 范凤霞, 袁学武, 朱文祥, 刘娜, 平婧, 柳建设. 德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响[J]. 微生物学通报, 2012, 39(5):624-637, 14. XIE XH, FAN FX, YUAN XW, ZHU WX, LIU N, PING J, LIU JS. Impact on microbial diversity of heavy metal pollution in soils near Dexing copper mine tailings[J]. Microbiology China, 2012, 39(5):624-637, 14 (in Chinese).
    [36] WU BH, LUO HY, WANG XT, LIU HK, PENG H, SHENG MP, XU F, XU H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of southwest China mine tailings[J]. Science of the Total Environment, 2022, 802:149899.
    [37] JIA T, WANG R, CHAI B. Effects of heavy metal pol
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

英高飞,张爽,王伟东,晏磊. 甘肃白银铜矿矿坑土壤细菌和古菌的多样性及坡度分布特征[J]. 微生物学通报, 2023, 50(1): 35-47

复制
分享
文章指标
  • 点击次数:411
  • 下载次数: 860
  • HTML阅读次数: 680
  • 引用次数: 0
历史
  • 收稿日期:2022-04-02
  • 最后修改日期:2022-07-17
  • 在线发布日期: 2023-01-03
文章二维码