科微学术

微生物学通报

链球菌突破血脑屏障的作用机制研究进展
作者:
基金项目:

国家重点研发计划(2021YFD1800800);国家生猪技术创新中心(NCTIP-XD/C17);重庆市自然科学基金(cstc2021jcyj-msxmX0504);重庆生猪产业技术体系项目(20211105)


Progress in mechanism of Streptococcus penetrating blood-brain barrier
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    血脑屏障(blood-brain barrier,BBB)是中枢神经系统(central nervous system,CNS)的天然结构和功能屏障之一,可有效阻止病原菌的入侵。然而病原菌能通过其自身毒力因子与脑内皮细胞相互作用,诱导宿主免疫应答反应,分泌大量细胞因子、趋化因子等,破坏紧密连接蛋白,最终突破血脑屏障,引起细菌性脑膜炎,产生不可逆的神经系统损伤。链球菌(Streptococcus)作为引起细菌性脑膜炎的重要病原菌,关于其突破血脑屏障分子机制研究已有显著进展。本文针对主要的链球菌,包括肺炎链球菌(Streptococcus pneumoniae)、猪链球菌(Streptococcus suis)、B型链球菌(group B Streptococcus,GBS)、马链球菌等突破血脑屏障的作用机制研究进展进行综述。

    Abstract:

    Blood-brain barrier (BBB), one of the natural structural and functional barriers of the central nervous system (CNS), can prevent the invasion of pathogenic bacteria. However, pathogenic bacteria can interact with brain endothelial cells via their virulence factors to induce host immune response and massive secretion of cytokines and chemokines and destroy tight junction proteins to penetrate the blood brain barrier, causing bacterial meningitis and irreversible nervous system damage. Streptococcus is a major pathogen causing bacterial meningitis. In recent years, significant progress has been achieved in the research on the molecular mechanism of Streptococcus penetrating the blood-brain barrier. This article reviews the progress in the mechanism of main Streptococcus species including Streptococcus pneumoniae, Streptococcus suis, group B Streptococcus, and Streptococcus equi in passing through the blood-brain barrier.

    参考文献
    [1] 韦冰梅, 韦巧珍, 陈玉君. 新生儿细菌性脑膜炎常见病原菌跨膜机制的研究进展[J]. 广西医学, 2021, 43(2):228-230, 237. Wei BM, Wei QZ, Chen YJ. Review on transmembrane mechanism of common pathogenic bacteria in neonatal bacterial meningitis[J]. Guangxi Medical Journal, 2021, 43(2):228-230, 237(in Chinese)
    [2] Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease[J]. The New England Journal of Medicine, 2001, 344(18):1378-1388
    [3] Petersdorf RG, Swarner DR, Garcia M. Studies on the pathogenesis of meningitis. II. development of meningitis during pneumococcal bacteremia[J]. The Journal of Clinical Investigation, 1962, 41(2):320-327
    [4] 贾凯翔, 曹芯蕊, 方仁东. 炎症小体在机体血脑屏障损伤中的作用机制研究进展[J]. 微生物学报, 2022. DOI:10.13343/j.cnki.wsxb.20220255. Jia KX, Cao XR, Fang RD. Role of inflammasome in blood-brain barrier injury:a review[J]. Acta Microbiologica Sinica, 2022. DOI:10.13343/j.cnki. wsxb.20220255(in Chinese)
    [5] Daneman R. The blood-brain barrier in health and disease[J]. Annals of Neurology, 2012, 72(5):648-672
    [6] Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier:development, composition and regulation[J]. Vascular Pharmacology, 2002, 38(6):323-337
    [7] Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease[J]. Nature, 2014, 508(7494):55-60
    [8] Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system's immune response[J]. Neurological Research, 2005, 27(7):685-691
    [9] Hudson LC, Bragg DC, Tompkins MB, Meeker RB. Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells[J]. Brain Research, 2005, 1058(1/2):148-160
    [10] Jamil Al-Obaidi MM, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain[J]. Cellular and Molecular Neurobiology, 2018, 38(7):1349-1368
    [11] Coutinho LG, Grandgirard D, Leib SL, Agnez-Lima LF. Cerebrospinal-fluid cytokine and chemokine profile in patients with pneumococcal and meningococcal meningitis[J]. BMC Infectious Diseases, 2013, 13:326
    [12] Fang RD, Uchiyama R, Sakai S, Hara H, Tsutsui H, Suda T, Mitsuyama M, Kawamura I, Tsuchiya K. ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism[J]. Mucosal Immunology, 2019, 12(5):1092-1103
    [13] Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae:transmission, colonization and invasion[J]. Nature Reviews Microbiology, 2018, 16(6):355-367
    [14] Iovino F, Orihuela CJ, Moorlag HE, Molema G, Bijlsma JJE. Interactions between blood-borne Streptococcus pneumoniae and the blood-brain barrier preceding meningitis[J]. PLoS One, 2013, 8(7):e68408
    [15] Gottschalk M, Segura M, Xu JG. Streptococcus suis infections in humans:the Chinese experience and the situation in north America[J]. Animal Health Research Reviews, 2007, 8(1):29-45
    [16] Charland N, Nizet V, Rubens CE, Kim KS, Lacouture S, Gottschalk M. Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells[J]. Infection and Immunity, 2000, 68(2):637-643
    [17] 郭文斐, 黄晶, 雷连成. 脑膜炎性病原菌破坏血脑屏障机制的研究进展[J]. 山东医药, 2018, 58(10):95-98. Guo WF, Huang J, Lei LC. Research progress on the mechanism of destruction of blood-brain barrier by pathogenic bacteria of meningitis[J]. Shandong Medical Journal, 2018, 58(10):95-98(in Chinese)
    [18] Zhou YQ, Peng ZL, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles[J]. Journal of Controlled Release:Official Journal of the Controlled Release Society, 2018, 270:290-303
    [19] Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain:insight into how bacterial pathogens cross blood-brain barriers[J]. Nature Reviews Microbiology, 2017, 15(3):149-159
    [20] Barichello T, Generoso JS, Simões LR, Elias SG, Quevedo J. Role of oxidative stress in the pathophysiology of pneumococcal meningitis[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013:371465
    [21] Meli DN, Christen S, Leib SL. Matrix metalloproteinase-9 in pneumococcal meningitis:activation via an oxidative pathway[J]. The Journal of Infectious Diseases, 2003, 187(9):1411-1415
    [22] Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Holländer GA. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis:association with blood-brain barrier damage and neurological sequelae[J]. Clinical Infectious Diseases, 2000, 31(1):80-84
    [23] Barichello T, Generoso JS, Michelon CM, Simões LR, Elias SG, Vuolo F, Comim CM, Dal-Pizzol F, Quevedo J. Inhibition of matrix metalloproteinases-2 and-9 prevents cognitive impairment induced by pneumococcal meningitis in Wistar rats[J]. Experimental Biology and Medicine:Maywood, N J, 2014, 239(2):225-231
    [24] Liu R, Li WY, Meng Y, Zhou H, Yu J, Ma Z, Fan HJ. The serine/threonine protein kinase of Streptococcus suis serotype 2 affects the ability of the pathogen to penetrate the blood-brain barrier[J]. Cellular Microbiology, 2018, 20(10):e12862
    [25] Li WY, Yin YF, Meng Y, Zhou H, Ma Z, Lin HX, Fan HJ. Proteomic analysis of bEnd.3 cells infected with wild-type and stk-deficient strains of Streptococcus suis serotype 2 reveals protein and pathway regulation[J]. Journal of Proteomics, 2020, 230:103983
    [26] Lü QY, Hao HJ, Bi LL, Zheng YL, Zhou XY, Jiang YQ. Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase[J]. Protein & Cell, 2014, 5(4):261-264
    [27] Kim BJ, Hancock BM, Bermudez A, Del Cid N, Reyes E, Van Sorge NM, Lauth X, Smurthwaite CA, Hilton BJ, Stotland A, et al. Bacterial induction of Snail1 contributes to blood-brain barrier disruption[J]. The Journal of Clinical Investigation, 2015, 125(6):2473-2483
    [28] Selvaraj SK, Periandythevar P, Prasadarao NV. Outer membrane protein A of Escherichia coli K1 selectively enhances the expression of intercellular adhesion molecule-1 in brain microvascular endothelial cells[J]. Microbes and Infection, 2007, 9(5):547-557
    [29] 李文娟, 梅家平, 杨勇, 叶素芬. NF-κBIA基因多态性与新生儿细菌性脑膜炎易感性相关性分析[J]. 中国医药导报, 2020, 17(6):19-22. Li WJ, Mei JP, Yang Y, Ye SF. Correlation analysis between NF-κBIA gene polymorphism and neonatal bacterial meningitis susceptibility[J]. China Medical Herald, 2020, 17(6):19-22(in Chinese)
    [30] Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, Stafford S, Periselneris J, Aldridge C, Vollmer W, et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins[J]. Journal of Immunology:Baltimore, Md:1950, 2014, 193(7):3736-3745
    [31] Nagai K, Domon H, Maekawa T, Oda M, Hiyoshi T, Tamura H, Yonezawa D, Arai Y, Yokoji M, Tabeta K, et al. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via Toll-like receptor 4[J]. Cellular Immunology, 2018, 325:14-22
    [32] Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K, Dorhoi A, Ma JT, et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia[J]. Journal of Immunology:Baltimore, Md:1950, 2011, 187(1):434-440
    [33] Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin:a double-edged sword during the host-pathogen interaction[J]. Current Molecular Medicine, 2008, 8(6):497-509
    [34] Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-induced nitric oxide synthase-2 contributes to blood/brain barrier dysfunction and acute mortality in experimental Streptococcus pneumoniae meningitis[J]. Journal of Interferon & Cytokine Research:the Official Journal of the International Society for Interferon and Cytokine Research, 2016, 36(2):86-99
    [35] Grandgirard D, Gäumann R, Coulibaly B, Dangy JP, Sie AL, Junghanss T, Schudel H, Pluschke G, Leib SL. The causative pathogen determines the inflammatory profile in cerebrospinal fluid and outcome in patients with bacterial meningitis[J]. Mediators of Inflammation, 2013, 2013:312476
    [36] Koedel U, Winkler F, Angele B, Fontana A, Flavell RA, Pfister HW. Role of caspase-1 in experimental pneumococcal meningitis:evidence from pharmacologic caspase inhibition and caspase-1-deficient mice[J]. Annals of Neurology, 2002, 51(3):319-329
    [37] Zwijnenburg PJG, Van Der Poll T, Florquin S, Roord JJ, Van Furth AM. IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis[J]. Journal of Immunology, 1950, 2003, 170(9):4724-4730
    [38] Mitchell AJ, Yau B, McQuillan JA, Ball HJ, Too LK, Abtin A, Hertzog P, Leib SL, Jones CA, Gerega SK, et al. Inflammasome-dependent IFN-γ drives pathogenesis in Streptococcus pneumoniae meningitis[J]. The Journal of Immunology, 2012, 189(10):4970-4980
    [39] Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization[J]. Cellular Microbiology, 2010, 12(11):1576-1588
    [40] Domínguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection[J]. Journal of Immunology:Baltimore, Md:1950, 2007, 179(3):1842-1854
    [41] Lavagna A, Auger JP, Girardin SE, Gisch N, Segura M, Gottschalk M. Recognition of lipoproteins by Toll-like receptor 2 and DNA by the AIM2 inflammasome is responsible for production of interleukin-1β by virulent suilysin-negative Streptococcus suis serotype 2[J]. Pathogens:Basel, Switzerland, 2020, 9(2):147
    [42] Ouyang X, Guo J, LÜ QY, Jiang H, Zheng YL, Liu P, Zhao TY, Kong DC, Hao HJ, Jiang YQ. TRIM32 drives pathogenesis in streptococcal toxic shock-like syndrome and Streptococcus suis meningitis by regulating innate immune r An overview of bacterial meningitis[J]. Chinese Journal of Infection Control, 2022, 21(1):97-103(in Chinese)
    [76] Li G, Wang GZ, Si XS, Zhang XK, Liu WT, Li L, Wang JF. Inhibition of suilysin activity and inflammation by myricetin attenuates Streptococcus suis virulence[J]. Life Sciences, 2019, 223:62-68
    [77] Li G, Wang G, Wang S, Deng Y. Ginkgetin in vitro and in vivo reduces Streptococcus suis virulence by inhibiting suilysin activity[J]. Journal of Applied Microbiology, 2019, 127(5):1556-1563
    [78] Lu H, Li XD, Wang GY, Wang CC, Feng JJ, Lu WJ, Wang XR, Chen HC, Liu ML, Tan C. Baicalein ameliorates Streptococcus suis-induced infection in vitro and in vivo[J]. International Journal of Molecular Sciences, 2021, 22(11):5829 Inflammation, 2013, 2013:480739
    [46] Xu DY, Wu XP, Peng LC, Chen TT, Huang QY, Wang Y, Ye C, Peng YY, Hu DL, Fang RD. The critical role of NLRP6 inflammasome in Streptococcus pneumoniae infection in vitro and in vivo[J]. International Journal of Molecular Sciences, 2021, 22(8):3876
    [47] Tao Q, Xu DY, Jia KX, Cao XR, Ye C, Xie SL, Hu DL, Peng LC, Fang RD. NLRP6 serves as a negative regulator of neutrophil recruitment and function during Streptococcus pneumoniae infection[J]. Frontiers in Microbiology, 2022, 13:898559
    [48] Feng SW, Chen TT, Lei GH, Hou FQ, Jiang JL, Huang QY, Peng YY, Ye C, Hu DL, Fang RD. Absent in melanoma 2 inflammasome is required for host defence against Streptococcus pneumoniae infection[J]. Innate Immunity, 2019, 25(7):412-419
    [49] Zhang TJ, Du HH, Feng SW, Wu R, Chen TT, Jiang JL, Peng YY, Ye C, Fang RD. NLRP3/ASC/caspase-1 axis and serine protease activity are involved in neutrophil IL-1β processing during Streptococcus pneumoniae infection[J]. Biochemical and Biophysical Research Communications, 2019, 513(3):675-680
    [50] 陶旗, 徐冬怡, 方仁东. NLRP6在感染性和非感染性疾病中的作用[J]. 微生物学报, 2022, 62(4):1190-1201. Tao Q, Xu DY, Fang RD. Role of NLRP6 in infectious and non-infectious diseases[J]. Acta Microbiologica Sinica, 2022, 62(4):1190-1201(in Chinese)
    [51] Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S, Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps[J]. Cellular Microbiology, 2007, 9(5):1162-1171
    [52] Middleton DR, Paschall AV, Duke JA, Avci FY. Enzymatic hydrolysis of pneumococcal capsular polysaccharide renders the bacterium vulnerable to host defense[J]. Infection and Immunity, 2018, 86(8):e00316-e00318
    [53] Van Der Maten E, Westra D, Van Selm S, Langereis JD, Bootsma HJ, Van Opzeeland FJH, De Groot R, Ruseva MM, Pickering MC, Van Den Heuvel LPWJ, et al. Complement factor H serum levels determine resistance to pneumococcal invasive disease[J]. The Journal of Infectious Diseases, 2016, 213(11):1820-1827
    [54] Smith BL, Hostetter MK. C3 as substrate for adhesion of Streptococcus pneumoniae[J]. The Journal of Infectious Diseases, 2000, 182(2):497-508
    [55] Surve MV, Bhutda S, Datey A, Anil A, Rawat S, Pushpakaran A, Singh D, Kim KS, Chakravortty D, Banerjee A. Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood-brain barrier trafficking[J]. PLoS Pathogens, 2018, 14(7):e1007168
    [56] Hirst RA, Kadioglu A, Andrew PW. The role of pneumolysin in pneumococcal pneumonia and meningitis[J]. Clinical and Experimental Immunology, 2004, 138(2):195-201
    [57] Takeuchi D, Akeda Y, Nakayama T, Kerdsin A, Sano Y, Kanda T, Hamada S, Dejsirilert S, Oishi K. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis[J]. The Journal of Infectious Diseases, 2014, 209(10):1509-1519
    [58] Liu Y, Wang H, Gao J, Wen Z, Peng L. Cryptotanshinone ameliorates the pathogenicity of Streptococcus suis by targeting suilysin and inflammation[J]. Journal of Applied Microbiology, 2021, 130(3):736-744
    [59] Yue CX, Hu CL, Xiang P, Zhang SM, Xiao HD, Zhou W, Jin H, Shi DS, Li JQ, Xu L, et al. Autophagy is a defense mechanism controlling Streptococcus suis serotype 2 infection in murine microglia cells[J]. Veterinary Microbiology, 2021, 258:109103
    [60] 刘嘉楠, 贾丽, 姜合祥, 吴桐, 李扬, 雷连成. 猪链球菌2型通过诱导IFN-γ促进脑微血管内皮细胞自噬破坏血脑屏障完整性[J]. 中国兽医学报, 2020, 40(12):2320-2326. Liu JN, Jia L, Jiang HX, Wu T, Li Y, Lei LC. Streptococcus suis type 2 promotes autophagy of brain microvascular endothelial cells by inducing IFN-γ to destroy the integrity of the blood-brain barrier[J]. Chinese Journal of Veterinary Science, 2020, 40(12):2320-2326(in Chinese)
    [61] Maisey HC, Doran KS, Nizet V. Recent advances in understanding the molecular basis of group B Streptococcus virulence[J]. Expert Reviews in Molecular Medicine, 2008, 10:e27
    [62] Quach D, Van Sorge NM, Kristian SA, Bryan JD, Shelver DW, Doran KS. The CiaR response regulator in group B Streptococcus promotes intracellular survival and resistance to innate immune defenses[J]. Journal of Bacteriology, 2009, 191(7):2023-2032
    [63] Cumley NJ, Smith LM, Anthony M, May RC. The CovS/CovR acid response regulator is required for intracellular survival of group B Streptococcus in macrophages[J]. Infection and Immunity, 2012, 80(5):1650-1661
    [64] Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadarao NV, Doran KS. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration[J]. Nature Communications, 2011, 2:462
    [65] Charland N, Nizet V, Rubens CE, Kim KS, Lacouture S, Gottschalk M. Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells[J]. Infection and Immunity, 2000, 68(2):637-643
    [66] Sui YT, Chen Y, Lv QY, Zheng YL, Kong DC, Jiang H, Huang WH, Ren YH, Liu P, Jiang YQ. Suilyin disrupts the blood-brain barrier by activating group III secretory phospholipase A2[J]. Life:Basel, Switzerland, 2022, 12(6):919
    [67] Fang RD, Wu R, Du HH, Jin ML, Liu YJ, Lei GH, Jiang B, Lei ZH, Peng YY, Nie K, et al. Pneumolysin-dependent calpain activation and interleukin-1α secretion in macrophages infected with streptococcus pneumoniae[J]. infection and immunity, 2017, 85(9):e00201-e00217
    [68] Zysk G, Schneider-wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by streptococcus pneumoniae[J]. Infection and immunity, 2001, 69(2):845-852
    [69] Braun J, Hoffmann O, Schickhaus M, Freyer D, Dagand E, Bermpohl D, Mitchell T, Bechmann I, Weber J. Pneumolysin causes neuronal cell death through mitochondrial damage[J]. Infection and Immunity, 2007, 75(9):4245-4254
    [70] Kim JY, Paton JC, Briles DE, Rhee DK, Pyo S. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia[J]. Oncotarget, 2015, 6(42):44161-44178
    [71] Hupp S, Heimeroth V, Wippel C, Förtsch C, Ma JT, Mitchell TJ, Iliev AI. Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema[J]. Glia, 2012, 60(1):137-146
    [72] Liu HT, Lei SY, Jia L, Xia XJ, Sun YY, Jiang HX, Zhu RN, Li SG, Qu GG, Gu JM, et al. Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity[J]. Veterinary Research, 2021, 52(1):30
    [73] Wu T, Jia L, Lei SY, Jiang HX, Liu JN, Li N, Langford PR, Liu HT, Lei LC. Host HSPD1 translocation from mitochondria to the cytoplasm induced by Streptococcus suis serovar 2 enolase mediates apoptosis and loss of blood-brain barrier integrity[J]. Cells, 2022, 11(13):2071
    [74] Sun YY, Li N, Zhang J, Liu HT, Liu JF, Xia XJ, Sun CJ, Feng X, Gu JM, Du CT, et al. Enolase of Streptococcus suis serotype 2 enhances blood–brain barrier permeability by inducing IL-8 release[J]. Inflammation, 2016, 39(2):718-726
    [75] 彭忠, 李春辉, 陈焕春, 王湘如. 细菌性脑膜炎概述[J]. 中国感染控制杂志, 2022, 21(1):97-103. Peng Z, Li CH, Chen HC, Wang XR.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹芯蕊,贾凯翔,方仁东. 链球菌突破血脑屏障的作用机制研究进展[J]. 微生物学通报, 2022, 49(12): 5311-5320

复制
分享
文章指标
  • 点击次数:480
  • 下载次数: 1454
  • HTML阅读次数: 710
  • 引用次数: 0
历史
  • 收稿日期:2022-09-17
  • 最后修改日期:2022-10-17
  • 在线发布日期: 2022-12-06
文章二维码