科微学术

微生物学通报

限制活动加剧2型糖尿病小鼠肠道菌群和糖脂代谢紊乱
作者:
基金项目:

国家自然科学基金(81700364);江苏省自然科学基金(BK20170179)


Activity restriction exacerbates the disorder of intestinal microflora and glucolipid metabolism in type 2 diabetes mice
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】久坐行为在2型糖尿病(type 2 diabetes mellitus,T2DM)患者群体中广泛存在,对于患者的血糖控制具有严重的不良影响,但是其具体机制还缺乏较为完善的阐述。【目的】通过限制小鼠活动模拟久坐行为,从而阐明久坐导致2型糖尿病小鼠糖脂代谢紊乱加剧的具体机制,为相应的健康教育和干预提供一定的理论基础。【方法】利用C57BL/6J雄性小鼠构建糖尿病模型,小鼠随机分为3组:正常组(CON)、2型糖尿病模型组(MOD)和2型糖尿病限制活动组(SED),通过限制小鼠活动的方法使其进行8周的久坐行为;采用试剂盒和形态学观察法测定小鼠糖脂代谢紊乱情况;HE和PAS染色观察小鼠回肠组织受损情况;采用RT-qPCR法测定小鼠粪便微生物的变化;采用TBA试剂盒测定小鼠血清和肝脏中总胆汁酸含量;分别通过荧光定量PCR(RT-qPCR)和Western blotting测定小鼠回肠和肝脏组织中法尼醇X受体(farnesoid X receptor,FXR)和G蛋白偶联胆汁酸受体5(G protein coupled bile acid receptor 5,TGR5)的mRNA和蛋白表达水平。【结果】与正常组相比,模型组小鼠血糖升高、血脂增加、胰岛素抵抗和口服葡萄糖耐量紊乱,而且肠道病理学变化明显,限制活动使T2DM小鼠糖脂代谢紊乱增加(P<0.05);T2DM小鼠肠道菌群失调,在门和属水平上的有益菌减少、有害菌增加,限制活动加剧了这一情况;与正常组相比,T2DM小鼠血清和肝脏组织中总胆汁酸含量增加,限制活动组总胆汁酸进一步增加(P<0.05);模型组小鼠胆汁酸受体FXR和TGR5表达较正常组显著降低(P<0.01),限制活动后进一步抑制了这些受体的表达。同时,Spearman相关性分析也显示小鼠糖脂代谢水平与肠道菌群及肠道菌群代谢物胆汁酸存在显著相关性。【结论】限制活动致使T2DM小鼠糖脂代谢紊乱加剧,其机制可能与肠道菌群和胆汁酸代谢失调,以及胆汁酸受体的进一步下调有关。

    Abstract:

    [Background] Sedentary behavior, which is common among patients with type 2 diabetes, blocks the blood glucose control. However, its specific mechanism is not fully clarified. [Objective] To simulate sedentary behavior by limiting the activity of mice, to elucidate the mechanism for the aggravation of glucolipid metabolism disorder in type 2 diabetes mice by this behavior, and thus to lay a theoretical basis for relevant health education and intervention. [Methods] Male C57BL/6J mice were used in this study. Mice were randomized into the normal (CON) group, type 2 diabetes model (MOD) group and type 2 diabetes with activity restriction (SED) group. Model mice were used in the MOD group and SED group, and for the SED group, the time for the activity of mice was controlled to simulate the sedentary behavior for 8 weeks. The metabolic disorder of glucose and lipids in mice was determined by kits and morphological observation. The damage of ileum was observed based on hematoxylin and eosin (HE) and alcian blue-periodic acid-Schiff (AB-PAS) staining. Quantitative reverse transcription PCR (RT-qPCR) was used to determine the changes of fecal microbes in mice, and TBA kit to measure the content of total bile acid in serum and liver of mice. The mRNA and protein expression of farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) in ileum and liver of mice were detected by qPCR and Western blotting, respectively. [Results] Compared with the CON group, the MOD group showed in increase in blood glucose and lipids, insulin resistance, oral glucose tolerance disorder, and obvious intestinal pathological changes. Restriction of mouse activity enhanced the disorder of glucose and lipid metabolism in diabetes mice (P<0.05). The diabetes mice displayed imbalance in intestinal flora, as manifested by the reduction in beneficial bacteria and increase in harmful bacteria at phylum and genus levels, which was exacerbated by the restriction of mouse activity. The total bile acid content in serum and liver was higher in the MOD group than that in the CON group, and higher in the SED group than in the MOD group (P<0.05). The expression of FXR and TGR5 in the MOD group was lower than that in the CON group (P<0.01), and the expression of these receptors was further inhibited by activity restriction. Spearman’s correlation analysis also showed that glucolipid metabolism was in significant correlation with intestinal flora and bile acid, a metabolite of intestinal flora. [Conclusion] Activity restriction aggravated the disorder of glucose and lipid metabolism in T2DM mice, which may be related to the imbalance of intestinal flora and bile acid metabolism, and the further down-regulation of bile acid receptor.

    参考文献
    [1] Ma QT, Li YQ, Li PF, Wang M, Wang JK, Tang ZY, Wang T, Luo LL, Wang CG, Wang T, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomedicine & Pharmacotherapy, 2019, 117(6):109138
    [2] Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang YT, Lu Y, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045:systematic review and meta-analysis[J]. Ophthalmology, 2021,128(11):1580-1591
    [3] 王娅, 孙娟, 邓楠, 张晓义, 何红. 久坐行为干预在2型糖尿病患者及其高危人群中的研究进展[J]. 中国全科医学, 2018, 21(34):4283-4288. Wang Y, Sun J, Deng N, Zhang XY, He H. Recent developments in sedentary behavior interventions for populations with or at high risk for type 2 diabetes[J]. Chinese General Practice, 2018, 21(34):4283-4288(in Chinese)
    [4] Guo CM, Zhou QG, Zhang DD, Qin P, Li QM, Tian G, Liu DC, Chen X, Liu LL, Liu FY, et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension:a dose-response meta-analysis[J]. Diabetes, obesity & metabolism, 2020, 22(1):79-90
    [5] Figueriró TH, Arins GCB, Santos C, Cembranel F, Medeiros PA, D'Orsi E, Rech CR. Association of objectively measured sedentary behavior and physical activity with cardiometabolic risk markers in older adults[J]. PLoS One, 2019, 14(1):e0210861
    [6] Bassi D, Bueno P, Nonaka KO, Selistre-Araujo HS, Leal AM. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats[J]. Archives of Endocrinology and Metabolism, 2015, 59(2):148-153
    [7] 魏晓, 刘威, 袁静, 黄留玉. 人类肠道菌群与疾病关系的元基因组学研究进展[J]. 中国微生态学杂志, 2011, 23(1):75-80. Wei X, Liu W, Yuan J, Huang LY. Research progress on the relationship between human intestinal microbiota and host diseases[J]. Chinese Journal of Microecology, 2011, 23(1):75-80(in Chinese)
    [8] Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5(2):e9085
    [9] 王育璐, 逄曙光. 糖尿病与胆汁酸代谢的研究进展[J]. 中国医药科学, 2021, 11(23):70-73. Wang YL, Pang SG. Progress of the research on diabetes mellitus and bile acid metabolism[J]. China Medicine and Pharmacy, 2021, 11(23):70-73(in Chinese)
    [10] Wu YJ, Zhou A, Tang L, Lei YY, Tang B, Zhang LJ. Bile acids:key regulators and novel treatment targets for type 2 diabetes[J]. Journal of Diabetes Research, 2020, 2020:6138438
    [11] Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical activity/exercise and diabetes:a position statement of the American diabetes association[J]. Diabetes Care, 2016, 39(11):2065-2079
    [12] Lei YY, Gong LL, Tan FG, Liu YX, Li SS, Shen HW, Zhu M, Cai WW, Xu F, Hou B, et al. Vaccarin ameliorates insulin resistance and steatosis by activating the AMPK signaling pathway[J]. European Journal of Pharmacology, 2019, 851:13-24
    [13] Batacan RB Jr, Duncan MJ, Dalbo VJ, Buitrago GL, Fenning AS. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet[J]. Journal of Sport and Health Science, 2018, 7(1):109-119
    [14] Feng J, Niu PQ, Chen K, Wu LW, Liu T, Xu SZ, Li JJ, Li SN, Wang WW, Lu XY, et al. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury[J]. Experimental and Therapeutic Medicine, 2018, 15(6):4599-4614
    [15] 周慧, 罗声政, 钱月琴, 陆伦根. 高脂饮食诱导高胆汁酸通过下调干细胞功能损伤肠黏膜[J]. 胃肠病学, 2016, 21(10):610-614. Zhou H, Luo SZ, Qian YQ, Lu LG. High bile acid-induced by high-fat diet impairs intestinal mucosa by down-regulating stem cell function[J]. Chinese Journal of Gastroenterology, 2016, 21(10):610-614(in Chinese)
    [16] 陈俊, 钱紫星, 朱梦杨, 林晓, 葛亚梅. 基于GPR119/cAMP/GLP-1通路探讨葛根芩连汤的降糖机制[J]. 中国实验方剂学杂志, 2022, 28(3):25-30. Chen J, Qian ZX, Zhu MY, Lin X, Ge YM. Hypoglycemic mechanism of Gegen Qinliantang:an exploration based on GPR119/cAMP/GLP-1 pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(3):25-30(in Chinese)
    [17] 裴丽, 王美凤, 王燕, 张清. 糖尿病患者体力活动状况及影响因素分析[J]. 中华行为医学与脑科学杂志, 2015(12):1109-1112. Pei L, Wang MF, Wang Y, Zhang Q. Status and influencing factors of physical activity in patients with diabetes mellitus[J]. Chinese Journal of Behavioral Medical Science, 2015(12):1109-1112(in Chinese)
    [18] 王娅, 何红, 张晓义, 陈晓艳. 久坐行为与2型糖尿病患者糖脂代谢水平的相关性研究[J]. 南通大学学报(医学版), 2021, 41(4):352-357. Wang Y, He H, Zhang XY, Chen XY. Correlation between sedentary behavior and glucose and lipid metabolism in patients with type 2 diabetes mellitus[J]. Journal of Nantong University:Medical Sciences, 2021, 41(4):352-357(in Chinese)
    [19] Ma HD, Wang YH, Chang C, Gershwin ME, Lian ZX. The intestinal microbiota and microenvironment in liver[J]. Autoimmunity Reviews, 2015, 14(3):183-191
    [20] Zhang XY, Shen DQ, Fang ZW, Jie ZY, Qiu XM, Zhang CF, Chen YL, Ji LN. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8(8):e71108
    [21] Xie XH, Liao JB, Ai YL, Gao JM, Zhao J, Qu F, Xu C, Zhang ZY, Wen WB, Cui HT, et al. Pi-Dan-Jian-Qing decoction ameliorates type 2 diabetes mellitus through regulating the gut microbiota and serum metabolism[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:748872
    [22] 曾忠花, 刘容容, 汤俐, 李卫芬. 肠道菌群与胆汁酸代谢的互相作用[J]. 中国微生态学杂志, 2021, 33(7):849-856. Zeng ZH, Liu RR, Tang L, Li WF. Interaction between gut microbiota and bile acid metabolism[J]. Chinese Journal of Microecology, 2021, 33(7):849-856(in Chinese)
    [23] 贾敏杰, 冯波. 胆汁酸代谢与2型糖尿病的研究进展[J]. 同济大学学报(医学版), 2019, 40(5):644-649. Jia MJ, Feng B. Research progress on relationship between bile acid metabolism and type 2 diabetes mellitus[J]. Journal of Tongji University:Medical Science, 2019, 40(5):644-649(in Chinese)
    [24] 张娟, 邓泽元, 吴信. 胆汁酸对代谢性疾病的调控[J]. 中国生物化学与分子生物学报, 2019, 35(4):399-403. Zhang J, Deng ZY, Wu X. Regulation of bile acids on metabolic diseases[J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(4):399-403(in Chinese)
    [25] Yan XM, Zhang YL, Peng Y, Li XB. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice[J]. Journal of Ethnopharmacology, 2022, 293:115238
    [26] Makki K, Brolin H, Petersen N, Henricsson M, Christensen DP, Khan MT, Wahlström A, Bergh PO, Tremaroli V, Schoonjans K, et al. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice[J]. Gut, 2022. DOI:10.1136/gutjnl-2021-326541
    引证文献
引用本文

于晓依,李泰悦,朱雪锐,文嫄媛,朱美珍,蔡维维,邱丽颖. 限制活动加剧2型糖尿病小鼠肠道菌群和糖脂代谢紊乱[J]. 微生物学通报, 2022, 49(12): 5242-5255

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 1067
  • HTML阅读次数: 1626
  • 引用次数: 0
历史
  • 收稿日期:2022-06-27
  • 最后修改日期:2022-08-10
  • 在线发布日期: 2022-12-06
文章二维码