科微学术

微生物学通报

基于三代测序的食蟹猴Mafa-B等位基因共表达与进化分析
作者:
基金项目:

广东省发酵与酶工程重点实验室项目(163194083617178)


Co-expression and evolution of Mafa-B alleles in Macaca fascicularis based on third-generation sequencing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】主要组织相容性复合体(major histocompatibility complex,MHC)的多态性在很大程度上会影响生物医学实验的结果,而且特定的MHC-B等位基因与多种疾病的发展进程密切相关。食蟹猴(Macaca fascicularisMafa)是一种开展生物医学研究的重要实验动物,与人类相比,目前尚缺乏对食蟹猴Mafa-B等位基因的综合表征。【目的】获得全面的食蟹猴Mafa-B等位基因信息,鉴定Mafa-B等位基因共表达与进化关系。【方法】基于三代测序获得的食蟹猴MHC-B基因组信息,设计特异性引物扩增33只越南食蟹猴群体中的Mafa-B序列,并结合多种生物信息学方法进行分析。【结果】基于92个Mafa-B等位基因信息,鉴定了65个新的Mafa-B等位基因。其中,8个Mafa-B等位基因与其他地理来源的食蟹猴群体中已报道的序列相同,32个Mafa-B等位基因与其他猕猴物种中已报道的序列相同。此外,鉴定了7个高频Mafa-B谱系和7对共表达的Mafa-B等位基因,并检测到了一个潜在的重组事件。进化分析表明不同地理来源的食蟹猴群体Mafa-B序列具有很高的相似性。【结论】越南食蟹猴群体中共表达的Mafa-B等位基因经历了某些抗原的选择,不同地理来源的食蟹猴群体可能微调其Mafa-B序列以适应病原体的选择压力,本文为食蟹猴MHC遗传背景研究奠定了基础。

    Abstract:

    [Background] Major histocompatibility complex (MHC) is highly polymorphic, thus influencing the outcome of biomedical experiments. Particularly, specific MHC-B alleles are closely related to the development of various diseases. Macaca fascicularis (Mafa) is an important animal model for conducting biomedical research. Currently, Mafa-B alleles in Mafa have not been comprehensively characterized. [Objective] To explore the comprehensive information on Mafa-B alleles in Mafa and to identify co-expression and evolution of Mafa-B alleles. [Methods] Through third-generation sequencing, the genomic information of MHC-B of Mafa was obtained. Then, we designed specific primers to amplify Mafa-B alleles in a cohort of 33 Vietnamese Mafa individuals and characterized Mafa-B alleles with multiple bioinformatics methods. [Results] On the basis of information of 92 Mafa-B alleles, we identified 65 novel Mafa-B alleles. Among them, 8 alleles were identical to sequences previously reported in Mafa of other geographical origins and 32 were also found in macaque populations. In addition, we identified 7 high-frequency Mafa-B lineages and 7 pairs of co-expressed Mafa-B alleles, and detected one potential recombination event. Evolutionary analysis revealed the high similarity of Mafa-B sequences in Mafa from different geographical origins.[Conclusion] These co-expressed Mafa-B alleles in Vietnamese populations have undergone selection pressure by certain antigens, and Mafa populations of different geographical origins may fine-tune the Mafa-B sequences in response to pathogens. This study lays a foundation for elucidating the genetic background of MHC in Mafa.

    参考文献
    [1] Dijkman K, Vervenne RAW, Sombroek CC, Boot C, Hofman SO, Van Meijgaarden KE, Ottenhoff THM, Kocken CHM, Haanstra KG, Vierboom MPM, Verreck FAW. Disparate tuberculosis disease development in macaque species is associated with innate immunity[J]. Frontiers in Immunology, 2019, 10:2479
    [2] Almond N, Berry N, Stebbings R, Preston M, Ham C, Page M, Ferguson D, Rose N, Li B, Mee ET, Hassall M, Stahl-Hennig C, Athanasopoulos T, Papagatsias T, Herath S, Benlahrech A, Dickson G, Meiser A, Patterson S. Vaccination of macaques with DNA followed by adenoviral vectors encoding simian immunodeficiency virus (SIV) gag alone delays infection by repeated mucosal challenge with SIV[J]. Journal of Virology, 2019, 93(21):e00606-19
    [3] Kwon Y, Lee KW, Park H, Son JK, Lee J, Hong J, Park JB, Kim SJ. Comparative study of human and cynomolgus T-cell depletion with rabbit anti-thymocyte globulin (rATG) treatment-for dose adjustment in a non-human primate kidney transplantation model[J]. American Journal Transplantation Reserach, 2019, 11(10):6422-6432
    [4] Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, De Meulder D, Van Amerongen G, Van Den Brand J, Okba NMA, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model[J]. Science, 2020, 368(6494):1012-1015
    [5] Francke U, Pellegrino MA. Assignment of the major histocompatibility complex to a region of the short arm of human chromosome 6[J]. PNAS, 1977, 74(3):1147-1151
    [6] Dawkins R, Leelayuwat C, Gaudieri S, Tay G, Hui J, Cattley S, Martinez P, Kulski J. Genomics of the major histocompatibility complex:haplotypes, duplication, retroviruses and disease[J]. Immunological Reviews, 1999, 167:275-304
    [7] Shiina T, Ota M, Shimizu S, Katsuyama Y, Hashimoto N, Takasu M, Anzai T, Kulski JK, Kikkawa E, Naruse T, et al. Rapid evolution of major histocompatibility complex class I genes in primates generates new disease alleles in humans via hitchhiking diversity[J]. Genetics, 2006, 173(3):1555-1570
    [8] Robinson J, Guethlein LA, Cereb N, Yang SY, Norman PJ, Marsh SGE, Parham P. Distinguishing functional polymorphism from random variation in the sequences of >10,000HLA-A, -B and -C alleles[J]. PLoS Genetics, 2017, 13(6):e1006862
    [9] De Groot NG, Otting N, Maccari G, Robinson J, Hammond JA, Blancher A, Lafont BAP, Guethlein LA, Wroblewski EE, Marsh SGE, et al. Nomenclature report 2019:major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species[J]. Immunogenetics, 2020, 72(1-2):25-36
    [10] Heijmans CMC, De Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates[J]. International Journal of Immunogenetics, 2020, 47(3):243-260
    [11] Boyson JE, Shufflebotham C, Cadavid LF, Urvater JA, Knapp LA, Hughes AL, Watkins DI. The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates[J]. The Journal of Immunology, 1996, 156(12):4656-4665
    [12] Doxiadis GGM, De Groot N, Otting N, De Vos-Rouweler AJM, Bolijn MJ, Heijmans CMC, De Groot NG, Van Der Wiel MKH, Remarque EJ, Vangenot C, et al. Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques[J]. Immunogenetics, 2013, 65(8):569-584
    [13] Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O'Connor DH. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques[J]. G3(Bethesda), 2013, 3(7):1195-1201
    [14] Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE. Genetic divergence of the rhesus macaque major histocompatibility complex[J]. Genome Research, 2004, 14(8):1501-1515
    [15] Otting N, Doxiadis GGM, Bontrop RE. Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)[J]. Immunogenetics, 2009, 61(11):745-753
    [16] Otting N, De Groot N, De Vos-Rouweler AJM, Louwerse A, Doxiadis GGM, Bontrop RE. Multilocus definition of MHC haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)[J]. Immunogenetics, 2012, 64(10):755-765
    [17] Karl JA, Graham ME, Wiseman RW, Heimbruch KE, Gieger SM, Doxiadis GGM, Bontrop RE, O'Connor DH. Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities[J]. Immunogenetics, 2017, 69(4):211-229
    [18] Shortreed CG, Wiseman RW, Karl JA, Bussan HE, Baker DA, Prall TM, Haj AK, Moreno GK, Penedo MCT, O'Connor DH. Characterization of 100 extended major histocompatibility complex haplotypes in Indonesian cynomolgus macaques[J]. Immunogenetics, 2020, 72(4):225-239
    [19] De Groot NG, De Groot N, De Vos-Rouweler AJM, Louwerse A, Bruijnesteijn J, Bontrop RE. Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins[J]. Immunogenetics, 2022, 74(4):409-429
    [20] Bakker NP, Van Erck MG, Otting N, Lardy NM, Noort RC,'t Hart BA, Jonker M, Bontrop RE. Resistance to collagen-induced arthritis in a nonhuman primate species maps to the major histocompatibility complex class I region[J]. Journal of Experimental Medicine, 1992, 175(4):933-7
    [21] Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections[J]. Frontiers in Microbiology, 2012, 3:234
    [22] Martin MP, Carrington M. Immunogenetics of HIV disease[J]. Immunological Reviews, 2013, 254(1):245-264
    [23] Loffredo JT, Maxwell J, Qi Y, Glidden CE, Borchardt GJ, Soma T, Bean AT, Beal DR, Wilson NA, Rehrauer WM, et al. Mamu-B*08-positive macaques control simian immunodeficiency virus replication[J]. Journal of Virology, 2007, 81(16):8827-8832
    [24] Yant LJ, Friedrich TC, Johnson RC, May GE, Maness NJ, Enz AM, Lifson JD, O'Connor DH, Carrington M, Watkins DI. The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication[J]. Journal of Virology, 2006, 80(10):5074-5077
    [25] Huang ST, Huang X, Li S, Zhu MJ, Zhuo M. MHC class I allele diversity in cynomolgus macaques of Vietnamese origin[J]. PeerJ, 2019, 7:e7941
    [26] Dzuris JL, Sidney J, Appella E, Chesnut RW, Watkins DI, Sette A. Conserved MHC class I peptide binding motif between humans and rhesus macaques[J]. The Journal of Immunology, 2000, 164(1):283-291
    [27] Loffredo JT, Sidney J, Bean AT, Beal DR, Bardet W, Wahl A, Hawkins OE, Piaskowski S, Wilson NA, Hildebrand WH, et al. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity[J]. The Journal of Immunology, 2009, 182(12):7763-7775
    [28] Walter L, Ansari AA. MHC and KIR polymorphisms in rhesus macaque SIV infection[J]. Frontiers in Immunology, 2015, 6:540
    [29] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA, Charter K, Bib MJ, Bipp M, Keiser T, Butner M. Practical Streptomyces Genetics[M]. 2nd ed. Norwich:The John Innes Foundation, 2000
    [30] He QD, Chen M, Lin XG, Chen ZG. Allele-specific PCR with a novel data processing method based on difference value for single nucleotide polymorphism genotyping of ALDH2 gene[J]. Talanta, 2020, 220:121432
    [31] Mothé BR, Weinfurter J, Wang CX, Rehrauer W, Wilson N, Allen TM, Allison DB, Watkins DI. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication[J]. Journal of Virology, 2003, 77(4):2736-2740
    [32] Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, Watkins DI. Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape[J]. Immunogenetics, 2011, 63(9):587-597
    [33] Krebs KC, Jin ZY, Rudersdorf R, Hughes AL, O'Connor DH. Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques[J]. The Journal of Immunology, 2005, 175(8):5230-5239
    [34] Shiina T, Yamada Y, Aarnink A, Suzuki S, Masuya A, Ito S, Ido D, Yamanaka H, Iwatani C, Tsuchiya H, Ishigaki H, Itoh Y, Ogasawara K, Kulski JK, Blancher A. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing[J]. Immunogenetics, 2015, 67(10):563-578
    [35] Campbell KJ, Detmer AM, Karl JA, Wiseman RW, Blasky AJ, Hughes AL, Bimber BN, O'Connor SL, O'Connor DH. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques[J]. Immunogenetics, 2009, 61(3):177-187
    [36] Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, et al. Differential MHC class I expression in distinct leukocyte subsets[J]. BMC Immunology, 2011, 12:39
    [37] Yan GM, Zhang GJ, Fang XD, Zhang YF, Li C, Ling F, Cooper DN, Li QY, Li Y, Van Gool AJ, et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques[J]. Nature Biotechnology, 2011, 29(11):1019-1023
    [38] Fan ZX, Zhou AB, Osada N, Yu JQ, Jiang J, Li P, Du LM, Niu LL, Deng JB, Xu HL, et al. Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences[J]. Molecular Phylogenetics and Evolution, 2018, 127:376-386
    [39] Osada N, Hettiarachchi N, Adeyemi Babarinde I, Saitou N, Blancher A. Whole-genome sequencing of six Mauritian cynomolgus macaques (Macaca fascicularis) reveals a genome-wide pattern of polymorphisms under extreme population bottleneck[J]. Genome Biology and Evolution, 2015, 7(3):821-830
    [40] Burwitz BJ, Pendley CJ, Greene JM, Detmer AM, Lhost JJ, Karl JA, Piaskowski SM, Rudersdorf RA, Wallace LT, Bimber BN, et al. Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex class I alleles that restrict simian immunodeficiency virus-specific CD8+ T cells[J]. Journal of Virology, 2009, 83(12):6011-6019
    [41] Semler MR, Wiseman RW, Karl JA, Graham ME, Gieger SM, O'Connor DH. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques[J]. Immunogenetics, 2018, 70(6):381-399
    [42] Orysiuk D, Lawrence J, Prashar T, Spangelo L, Pilon R, Fournier J, Rud E, Sandstrom P, Plummer FA, Luo M. Evidence of recombination producing allelic diversity in MHC class I Mafa-B and -A alleles in cynomolgus macaques[J]. Tissue Antigens, 2012, 79(5):351-358
    [43] Kato Y, Griesemer AD, Wu A, Sondermeijer HP, Weiner JI, Duran-Struuck R, Martinez M, Slate AR, Romanov A, Lefkowitch JH, et al. Novel H-shunt venovenous bypass for liver transplantation in cynomolgus macaques[J]. Comparative Medicine, 2017, 67(5):436-441
    [44] Matsunami M, Rosales IA, Adam BA, Oura T, Mengel M, Smith RN, Lee H, Cosimi AB, Colvin RB, Kawai T. Long-term kinetics of intragraft gene signatures in renal allograft tolerance induced by transient mixed chimerism[J]. Transplantation, 2019, 103(11):e334-e344
    [45] Ezzelarab MB, Zhang H, Guo H, Lu L, Zahorchak AF, Wiseman RW, Nalesnik MA, Bhama JK, Cooper DKC, Thomson AW. Regulatory T cell infusion can enhance memory T cell and alloantibody responses in lymphodepleted nonhuman primate heart allograft recipients[J]. American Journal of Transplantation, 2016, 16(7):1999-2015
    [46] Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates[J]. Nature Communications, 2017, 8:385
    [47] Shiina T, Blancher A. The cynomolgus macaque MHC polymorphism in experimental medicine[J]. Cells, 2019, 8(9):978
    [48] Wiseman RW, Wojcechowskyj JA, Greene JM, Blasky AJ, Gopon T, Soma T, Friedrich TC, O'Connor SL, O'Connor DH. Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius[J]. Journal of Virology, 2007, 81(1):349-361
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡清秀,黄小琪,赵爱民,凌飞. 基于三代测序的食蟹猴Mafa-B等位基因共表达与进化分析[J]. 微生物学通报, 2022, 49(12): 5222-5241

复制
分享
文章指标
  • 点击次数:271
  • 下载次数: 989
  • HTML阅读次数: 1292
  • 引用次数: 0
历史
  • 收稿日期:2022-07-22
  • 最后修改日期:2022-08-15
  • 在线发布日期: 2022-12-06
文章二维码