科微学术

微生物学通报

耐碳青霉烯类肺炎克雷伯菌对C57BL/6小鼠肺部菌群的扰动
作者:
基金项目:

湖北医药学院人才启动金项目(2018QDJZR12);国家自然科学基金(81902034);湖北医药学院人才启动金项目(2021QDJZR021);湖北省大学生创新创业训练计划(202110929008)


Perturbation of carbapenem-resistant Klebsiella pneumoniae on the pulmonary flora of C57BL/6 mice
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】肺部菌群与宿主健康和呼吸道疾病密切相关,耐碳青霉烯类肺炎克雷伯菌(carbapenem-resistantKlebsiella pneumonia,CRKP)是临床常见的条件致病菌,感染后对肺部菌群的影响尚不清楚。【目的】探究耐碳青霉烯类肺炎克雷伯杆菌CRKP2对C57BL/6小鼠肺部菌群的扰动。【方法】将C57BL/6小鼠随机分为3组,分别用CRKP2、碳青霉烯类敏感肺炎克雷伯菌KP2044和无菌PBS溶液滴鼻,利用16S rRNA基因的高通量测序技术分析肺部菌群结构。【结果】与健康小鼠相比,菌株KP2044和CRKP2感染后小鼠肺部菌群α多样性和β多样性均显著改变,变形菌门相对丰度显著增加,乳酸杆菌属相对丰度明显下降。与KP2044相比,CRKP2生物膜形成能力较弱,感染后小鼠死亡率较低,对肺部菌群的扰动较小。【结论】虽然肺炎克雷伯菌是条件致病菌,但高剂量耐碳青霉烯类肺炎克雷伯菌CRKP2仍对健康小鼠肺部菌群造成显著影响;尽管菌株CRKP2具有多重耐药性,但与菌株KP2044相比对肺部菌群的扰动较小,因此推测KP菌株感染对肺部菌群的扰动程度可能与菌株毒力有关。

    Abstract:

    [Background] Pulmonary flora is closely associated with host health and respiratory diseases. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a common opportunistic pathogen in clinical practice, while its impact on pulmonary flora after infection remains unclear. [Objective] To explore the perturbation of carbapenem-resistant K.pneumoniae CRKP2 on the pulmonary flora of C57BL/6 mice. [Methods] The C57BL/6 mice were randomly assigned into 3 groups which were intranasally inoculated with CRKP2, carbapenem-sensitive K.pneumoniae KP2044, and sterile PBS solution, respectively. The structure of pulmonary flora was analyzed via 16S rRNA high-throughput sequencing. [Results] Compared with those in healthy mice, the alpha diversity and beta diversity of the pulmonary flora in the mice after KP2044 and CRKP2 strain infection significantly changed. Specifically, the infection with strain CRKP2 and KP2044 significantly increased the relative abundance of Proteobacteria and decreased that of Lactobacillus. Compared with KP2044, CRKP2 showed decreased biofilm formation and caused low mortality of infected mice, which indicated that CRKP2 infection led to weaker alteration of pulmonary flora than KP2044 infection.[Conclusion] Although K.pneumoniae is an opportunistic pathogen, high-dose carbapenem-resistant K.pneumoniae CRKP2 significantly affects the pulmonary flora of healthy mice. Although stain CRKP2 has multi-drug resistance, it leads to lower disturbance on the pulmonary flora than strain KP2044. Therefore, we hypothesize that the degree of disturbance of the pulmonary flora by K.pneumoniae infection may be related to strain virulence.

    参考文献
    [1] Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation:a two-way street[J]. Mucosal Immunology, 2017, 10(2):299-306
    [2] Man WH, De Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract:gatekeeper to respiratory health[J]. Nature Reviews Microbiology, 2017, 15(5):259-270
    [3] Xiao CL, Li SY, Zhou WQ, Shang DZ, Zhao S, Zhu XM, Chen KM, Wang RQ. The effect of air pollutants on the microecology of the respiratory tract of rats[J]. Environmental Toxicology and Pharmacology, 2013, 36(2):588-594
    [4] He M, Ichinose T, Yoshida S, Shiba F, Arashidani K, Takano H, Sun GF, Shibamoto T. Differences in allergic inflammatory responses in murine lungs:comparison of PM2.5 and coarse PM collected during the hazy events in a Chinese city[J]. Inhalation Toxicology, 2016, 28(14):706-718
    [5] Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-host interactions:physiology and pathophysiology of respiratory infection[J]. Physiological Reviews, 2018, 98(2):781-811
    [6] Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The airway microbiome in patients with severe asthma:associations with disease features and severity[J]. The Journal of Allergy and Clinical Immunology, 2015, 136(4):874-884
    [7] De Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, Van Den Bergh MR, Veenhoven RH, Wang XH, Trzciński K, Bonten MJ, Rossen JWA, et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients[J]. The ISME Journal, 2016, 10(1):97-108
    [8] Xiao TT, Guo Q, Zhou YZ, Shen P, Wang Y, Fang Q, Li M, Zhang ST, Guo LH, Yu X, et al. Comparative respiratory tract microbiome between carbapenem-resistant Acinetobacter baumannii colonization and ventilator associated pneumonia[J]. Frontiers in Microbiology, 2022, 13:782210
    [9] Wagenlehner FME, Dittmar F. Re:global burden of bacterial antimicrobial resistance in 2019:a systematic analysis[J]. European Urology, 2022:S0302-2838(22)02614
    [10] Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005‒2014[J]. Clinical Microbiology and Infection:the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2016, 22(suppl 1):S9-S14
    [11] Daikos GL, Markogiannakis A, Souli M, Tzouvelekis LS. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae:a clinical perspective[J]. Expert Review of Anti-Infective Therapy, 2012, 10(12):1393-1404
    [12] 耿波, 邓毅, 陈晓梅. 综合ICU医院感染病原菌分布及耐药性分析[J]. 现代医药卫生, 2021, 37(19):3335-3337. Geng B, Deng Y, Chen XM. Distribution and drug-resistance analysis of nosocomial infection pathogens in ICU[J]. Journal of Modern Medicine & Health, 2021, 37(19):3335-3337(in Chinese)
    [13] Wu T, Xu FM, Su C, Li HR, Lyu N, Liu YY, Gao YF, Lan YH, Li JB. Alterations in the gut microbiome and cecal metabolome during Klebsiella pneumoniae-induced pneumosepsis[J]. Frontiers in Immunology, 2020, 11:1331
    [14] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336
    [15] Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers:a new tool for accurate cutting of primers from reads of targeted next generation sequencing[J]. Journal of Computational Biology:a Journal of Computational Molecular Cell Biology, 2017, 24(11):1138-1143
    [16] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7):581-583
    [17] Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME倠?…?愱椳渷‰????椲猭敦湥?側卵???楣捬牡潳扳楩潦浩敥?搠楰癬敵牧獩楮瑛祊?椮渠?瑩档敲?獢灩畯瑭略洬?漲昰?瀸愬琠椶攨渱琩猺?眰椼瑢桲 ̄灛由永浝漠湄慥牓祡?瑴畩扳攠牔捚甬氠潈獵楧獥孮?嵯???甠牐漬瀠敌慡湲??潮甠牎測愠汒?潪晡??汍椬渠楂捲慯汤??椠捅牌漬戠楋潥汬潬来祲????湈晵敢捥瑲椠潔甬猠??楬獥敶慩猠敄猬???????????????㈠ぇ??ㄠ??づ?扮牧?孮??崬?塡甠????坥慲湡札????奫略慤渠????坲慒湎杁?????椠??剴??婡桳慥渠条??匠??呲楫慢湥?奣???奯慭湰条????坥愠湷杩??????楛????呁桰数??扥癤删?牮敤朠畅汮慶瑩潲牯?捭潥湮瑴牡楬戠畍瑩散獲?瑢潩?捬慯灧獹甬氠攲‰瀰父漬搠男挲琨椷漩渺?‰漶甹琭攵爰?洲攼浢扲爾慛渱改?瀠牐潡瑲敡楤湩?戠楅漬猠祓湣瑨桬敩獥楰猠??愠湁瑰楥瀠栵愮朰漺捡祮琠潥獮楶獩??慮湭摥?癴椠牦畯汲攠湭捯敤?楲湮??楨??汯敧扥獮楥整汩汣慳?灡湮敤甠浥潶湯楬慵整??楮?孲?崠???湬晹敳捥瑳椠潩湮?慒湛摊??洠浂畩湯楩瑮祦???ち??????????攬???ㄨ??攺???木??戸爼?孲资?崲‰偝愠牂歵?卤???楋浆??????慬敡??奄??奒潥潨?????楆洬?????楲浭?????倬愠牋步??卹???攠效?????景晬整捺琠獐?漠晁?桭敳慴瑲?歮楧氭汊敡摭??椠??慈挬琠潁扤慣捯楣汫氠畉獍?瀠汃慨湯瑴慩牲畭浡??椠??愬朠慃楨湵獮瑧?楋湆昬氠略整渠穡慬?瘠楆牵畮獣整獩?楮湡?洠楥捦敦孥?嵴???潦甠牴湨慥氠?潩晣??楢捩牯潴扡椠潩汮漠杣票???ど??????????????????扡牳?孛?そ崮??畨橥椠浌畡牮慣??????数浩潲潡牴?呲??前慥畤捩档?????愲爰由焹椬????‰?愺渹朰?匭?′?漼桢湲猾潛渲??????漠疷珪栬攠票?????嫨澆爮愠璮琟椁????伨真滓戧禾?????疔欨慛捊獝?丠坎??敔琻?慂泗???漰由猸攬?搳甶猨琵?攺砵瀶漴猭电父攷?洠敗摡楮慧琠效猬?杋畡瑮?洠楄挬爠潚扨楯潵洠敘??椠??愠捙瑑漮戠慐捲楥汶汥畮獴??楮??敦渠物楮捦桥浣整湩瑯?慳渠摤?慳楥牡睳慥祳?楴浨浲畯湵敧?搠敭晩散湲獯敥?慯杬慯楧湹猠瑭?慤汵汬敡牴杩敯湮猠?慥湣摨?癩楱牵略獳?楊湝昮攠捈瑵楡漠湘孩?嵋??倠乑?卡??㈠す?????ㄠ??㈠??????????戠爳?嬨?ㄩ崺‵?洴漭渵收琷?卢? ̄?愲稲慝爠敓癨楡捨?噔???敨敡浨愠湚測?剂敡晬潯湣摨椠湚椬?????慘?椮甠浔汨?愠?乯???敯潦?卭???楯牢慩牯摴????丠潲捥煳異敩瑲??潯祲敹爠?噥??坴潨稠湡楮慤欠?????敳獥灳爬??????獣????剬敹渠穩楮????敥瑲?慵汬???摳敛湊瑝椮映楂捩慯瑭楥潤湩?潩普?爠攦猠灐楨牡慲瑭潡牣祯?浨楥捲牡潰批椬漠琲愰′洱愬爠欱攴爳猺?椱渲?瘰攸渼瑢楲氾慛琲漳牝?慅獳獰潯捳楩慴瑯攠摓?瀠湐敲畩浮潣湩楰慩嬠?崮???湰瑡散湴猠楯癦攠??慳牯数??敲摹楮捧楥湡敬???っ??????????ㄠぴ????づ???扯牰?孥??崠??漠汲祥湳数慩畲硡?偯????慲污汣楴愠?偩???潳硥??????潅潵瑲楯瑰瑥????坯極汲汮楡獬?佯睦攠湃?卩?????漠浍潩汣慲????呬牯畧橹椠氦氠潉?呦潥牣牴慩汯扵潳??????汳步楳測?匲???漬渠″伷????漱漭欷猼潢湲 ̄坛伲???敃瑡?慤汥??佳甠瑐杁爬漠睃瑯桯?潥晲?瑐桊攬?扃慯捸琠敍牊椬愠汃?慩楣牯眠慍礬?流楲捩牡潳戠楃漬洠敍?慦晦瑡整牴?牍框椬渠潃癯楯牫畳獯?攠硗慏挮攠牕扰慰瑥楲漠湡?潲晷?捹桳爠潭湩楣捲?潢扩獯瑴牡甠捩瑮椠癡敮?灩畢汩浯潴湩慣爭祮?搦楩獵敭慬猻敶孥?嵷???浺敩牮楧挠慡湮??潨略牡湬慴汨?漠晩?剦敡獮灴楳爠慦瑲潯牭礠?慨湥搠??牯楰瑩楣捳愠汯??慲牵敲??攠摅楣捵楡湤敯???そ?????????づ???日㈱??ㄠ祝???戩爺?嬴??崰″似橢敲款畛渲氵敝?佈???慹渠睍漬????卫慥渠湃椬??????椠??渠?癡楲瑤牥潮??椠??愠湂摵??椠?椬渠?癯楳癳潬??椠??攠癄慡汶畩慥瑳椠潊測?潅晲??楮?圠敁椬猠獐敯汵汬慴?捲椠扌愬爠楐慡??楴??愠湌搬??楴??慬挮琠潄扩慳捯楲汤汥畲獥?瀠汭慩湣瑲慯牢畩浡??楣??晭潵牮?瑴桩敥楳爠?灮爠潡瑳整捨瑭楡癴敩?攠晡晩敲捷瑡?慳杛慊楝渮猠瑐?捯慓搠浏楮略洬?愲渰搱‰氬攠愵搨?琩漺硥椸挵椷琸椼敢獲嬾?崲???故瑲瑢攭牄獯?楮湷??灤瀠汊楒攬搠??楯捭牰潳扯楮漠汄潌本礠?????????????????????cCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, et al. Analysis of the lung microbiome in the healthy smoker and in COPD[J]. PLoS One, 2011, 6(2):e16384
    [27] Krishna
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔媛媛,王淼,万唐江,王嘉琪,位秀丽,肖潇,李默然. 耐碳青霉烯类肺炎克雷伯菌对C57BL/6小鼠肺部菌群的扰动[J]. 微生物学通报, 2022, 49(12): 5194-5205

复制
分享
文章指标
  • 点击次数:252
  • 下载次数: 855
  • HTML阅读次数: 1028
  • 引用次数: 0
历史
  • 收稿日期:2022-09-17
  • 最后修改日期:2022-10-17
  • 在线发布日期: 2022-12-06
文章二维码