科微学术

微生物学通报

一株产丁酸羊源拜氏梭菌的筛选及其培养条件优化
作者:
基金项目:

内蒙古自治区科技重大专项(2021SZD0014);国家自然科学基金面上项目(31872385)


Screening and culture condition optimization of a butyrate-producing Clostridium beijerinckii strain from sheep
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】人类和动物消化道内栖息着极其复杂和多样化的微生物群落,这些微生物群落分布在肠道的不同位置并执行着特定的功能。近年来,产丁酸菌逐渐成为微生物领域的研究热点,产丁酸菌主要为产芽孢革兰氏阳性厌氧菌,对肠道健康有重要意义。【目的】从反刍动物瘤胃中筛选出产丁酸菌株并研究其生长特性,进一步优化其培养条件,从而提高产丁酸菌的丁酸产量。【方法】以绵羊瘤胃内容物为样品,运用稀释涂布法进行产丁酸菌的筛选,通过形态学观察和16S rRNA基因序列分析等方法对菌株进行鉴定。通过单因素试验与Box-Behnken design试验相结合,对培养条件进行优化,确定筛选菌株在梭菌增殖培养基(reinforced clostridium medium,RCM)中的最佳产酸培养条件。【结果】经过筛选鉴定得到的菌株为梭菌属的拜氏梭菌(clostridium beijerinckii,CB),命名为拜氏梭菌R8(CB.R8)。对拜氏梭菌R8的培养条件进行优化,得出该菌株在接种量为1.22%、温度为38.45℃、pH6.08和培养时间为64.67h的条件下丁酸产量为2.48g/L。【结论】筛选到1株拜氏梭菌R8,该菌能够在RCM培养基中生长并代谢产生丁酸,具备较高的应用价值。

    Abstract:

    [Background] The digestive tracts of humans and animals harbor complex microbiota composed of diverse species which inhabit different parts of the intestine and perform specific functions. In recent years, butyrate-producing bacteria have gradually become a research hotspot in microbiology. Butyrate-producing bacteria are mainly spore-forming Gram-positive anaerobic bacteria, which are of great significance to intestinal health.[Objective] To screen butyrate-producing bacteria from the rumen of ruminants and study its growth characteristics, and further optimize its culture conditions to improve the butyrate production. [Methods] Butyrate-producing bacteria were screened from sheep rumen contents by dilution coating method and identified via morphological observation and 16S rRNA gene sequence analysis. Single factor test and Box-Behnken design were employed to optimize the acid producing conditions of the screened strain in reinforced Clostridium medium (RCM). [Results] The strain screened and identified was Clostridium beijerinckii and was named C.beijerinckii R8. The butyrate production of C.beijerinckii R8 reached 2.48 g/L under the conditions of 1.22% inoculation amount, 38.45 ℃, and pH 6.08 for 64.67 h. [Conclusion] A strain of C.beijerinckii R8 was screened, which grows and produces butyrate in RCM, demonstrating a high application value.

    参考文献
    [1] Bowring BG, Jenkins SN, Collins AM. Scouring weaner pigs have a lower abundance of butyrate-producing bacteria[J]. Animal Production Science, 2015, 55(12):1448
    [2] Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63(8):1275-1283
    [3] Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data[J]. mBio, 2014, 5(2):e00889
    [4] Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8):953-961
    [5] Barmpalia-Davis IM, Geornaras I, Kendall PA, Sofos JN. Effect of fat content on survival of Listeria monocytogenes during simulated digestion of inoculated beef frankfurters stored at 7℃[J]. Food Microbiology, 2009, 26(5):483-490
    [6] Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics, 2004, 5(2):150-163
    [7] McCoy E, Fred EB, Peterson WH, Hastings EG. A cultural study of certain anaerobic butyric-acid-forming bacteria[J]. The Journal of Infectious Diseases, 1930, 46(2):118-137
    [8] Chen WJ, Zhang S, Wu JF, Ye T, Wang S, Wang P, Xing DM. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis[J]. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2020, 507:236-241
    [9] Herrmann G, Jayamani E, Mai G, Buckel W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria[J]. Journal of Bacteriology, 2008, 190(3):784-791
    [10] Tye H, Yu CH, Simms LA, De Zoete MR, Kim ML, Zakrzewski M, Penington JS, Harapas CR, Souza-Fonseca-Guimaraes F, Wockner LF, et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease[J]. Nature Communications, 2018, 9:3728
    [11] O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics:the spectrum from probiotics to live biotherapeutics[J]. Nature Microbiology, 2017, 2:17057
    [12] Bui TPN, De Vos WM. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2021, 35(3):101504
    [13] 刘逸凡, 蔡国林, 李晓敏, 陆健. 丁酸梭菌的筛选及其胞外多糖抗氧化性的研究[J]. 食品与发酵工业, 2019, 45(5):25-30
    Liu YF, Cai GL, Li XM, Lu J. Screening and identification of Clostridium butyricum and antioxidant activities of its exopolysaccharides[J]. Food and Fermentation Industries, 2019, 45(5):25-30(in Chinese)
    [14] Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(5):1615-1620
    [15] Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health[J]. Gut Microb敥浳椬挠愲氰′?測朠椱渲攨攱爩椺渱朸‰?漸甶父渼慢汲??㈱??㈠????づ?ㄠぁ?????扪牥?嬠??崠??敲汴汥楬摢潯?????漠畍牡敪楡物潴?偓椬渠瑐潲?????潁挬愠?????漠湅稬??????汭敡稠??攠湗楩瑮潫?????慪牥捲??水???慬??畮扫攠牓漬??呥???捡敮琠潊湊敇?才甬琠慥湴漠污?攮琠桄慵湯潤汥?????? ̄灁牮潡摥畲捯瑢極潴湹?扩祣??椠??汥潨獮瑧牥楮摩楩甼洯?戾攠楩橮敦牵楳湩捯歮椠楳??業??晡牴潥浳?睇桌敐愭琱?獰瑲牯慤睵?桴祩摯牮漬氠祡獭慥瑬敩獯?敡晴晥楳挠楧敬湹瑣?略獭敩?漠晣?灮整湲瑯慬?慡湮摤?桢敥确慥?捩慣物扡潬桬祹搠牳慨瑡数獥孳?嵴???楤潵牯敤獥潮畡牬挠整?呡敮捳档湲潩汰潴杯祭???のㄠ????????????の??扯牭?嬠??嵢??楣畴?????畡潮?呯??坳慥湤朠????卬桥攭湢?塩乮???楬畡????中楣畯??兲???楥慤渠杣????夭楯湶来??????湹桛慊湝挮攠摇?扴甬琠愲渰漲氲?瀠爷漱搨甸挩琺椱漵渷?戭礱‵椸渷挼牢敲愾獛椱渷杝?事????憗湫搬??咷偿?氠敪盥攟氮猠?榑滌??榄??沭濌玄瑛爉榌摴榚痊浓‖拊攟榟櫽攔牶楛湊捝欮椠椭??楧??丬????‵???㈱?戱礳?椺渷猵攭爸琱椼潢湲愾汗?楮湧愠捔瑈椬瘠慚瑯楮潧渠?漬映??扮敧椠彄??ㄠし孡?嵧???瀮瀠汓楣敲摥??楩据牧漬戠楩潤汥潮杴祩?慩湣摡??楯潮琠敡据桤渠漼汩漾杩祮???ぴ?????????????????????dy of Clostridium butyricum which produce antimicrobial protein[J]. Chinese Journal of Animal Science, 2015, 51(13):75-81(in Chinese)
    [18] 廖秀冬. 丁酸梭菌的筛选及其对动物抗氧化能力和肉鸡肉品质影响的研究[D]. 北京:中国农业大学博士学位论文, 2015
    Liao XD. Screening of Clostridium butyricum and its effects on animal antioxidation and meat quality in broiler chickens[D]. Beijing:Doctoral Dissertation of China Agricultural University, 2015(in Chinese)
    [19] 方超, 徐佳, 李娜, 张晓君, 申剑, 赵宇峰. 人肠道内Faecalibacterium prausnitzii的分离、鉴定及优良菌株筛选研究[J]. 基因组学与应用生物学, 2018, 37(7):2866-2873
    Fang C, Xu J, Li N, Zhang XJ, Shen J, Zhao YF. Isolation, identification and excellent strain screening of Faecalibacterium prausnitzii in human intestinal tract[J]. Genomics and Applied Biology, 2018, 37(7):2866-2873(in Chinese)
    [20] 李青德, 王小芬, 孙连军. 拜氏梭菌产丁醇的研究进展[J]. 农业生物技术学报, 2020, 28(12):2240-2249
    Li QD, Wang XF, Sun LJ. Research progress on the butanol production by Clostridium beijerinckii[J]. Journal of Agricultural Biotechnology, 2020, 28(12):2240-2249(in Chinese)
    [21] Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass:from genes to bioreactors[J]. Current Opinion in Biotechnology, 2007, 18(3):220-227
    [22] Carrié M, Velly H, Ben-Chaabane F, Gabelle JC. Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams[J]. Bioch
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付域泽,焦帅,张乃锋. 一株产丁酸羊源拜氏梭菌的筛选及其培养条件优化[J]. 微生物学通报, 2022, 49(12): 5184-5193

复制
分享
文章指标
  • 点击次数:355
  • 下载次数: 1101
  • HTML阅读次数: 1153
  • 引用次数: 0
历史
  • 收稿日期:2022-09-28
  • 最后修改日期:2022-10-13
  • 在线发布日期: 2022-12-06
文章二维码