科微学术

微生物学通报

酿酒酵母中胆固醇生物合成与优化的研究进展
作者:
基金项目:

国家重点研发计划(2018YFA0901800)


Biosynthesis and optimization of cholesterol in Saccharomyces cerevisiae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    胆固醇是动物体内积累的主要甾醇化合物,在维持细胞膜功能、合成甾体激素、生产甾体药物中间体等方面具有重要的生物学意义和医学应用价值。传统动物组织提取胆固醇的方法费时费力并存在严重的环境污染问题,而甾醇分子结构的复杂程度也限制了其化学全合成。近些年,人们利用合成生物学方法构建的微生物细胞工厂已成功用于萜类、甾醇类等天然产物的开发与合成。文中综述了胆固醇微生物细胞工厂的研究进展,包括胆固醇生物合成途径的解析、底盘菌株的选择、异源基因元件的挖掘与优化、相关代谢通路的调控等方面,并讨论了当前研究面临的问题,以期为胆固醇的高效生物合成提供参考。

    Abstract:

    Cholesterol is a major sterol compounds accumulating in animals, which has important biological significance and medical application value in maintaining cell membrane function, synthesizing steroid hormones, and producing steroid drug intermediates. Traditionally, cholesterol is obtained by animal tissue extraction, but the whole process is time-consuming and laborious, accompanied by severe environmental pollution. Due to the complex and delicate structure, steroids are difficult to be produced by chemical total synthesis. Most recently, microbial cell factories constructed by synthetic biology have been successfully applied on the biosynthesis and development of natural products, such as terpenoids and sterols. This paper summarized the research progress on cholesterol microbial cell factories, including characterization of cholesterol biosynthesis pathway, selection of chassis strains, mining and optimization of heterologous gene components, and regulation of metabolic pathway, as well as discussed the problems faced by the current research, hoping to provide references for the effective biosynthesis of cholesterol.

    参考文献
    [1] Li LH, Dutkiewicz EP, Huang YC, Zhou HB, Hsu CC. Analytical methods for cholesterol quantification[J]. Journal of Food and Drug Analysis, 2019, 27(2): 375-386
    [2] Khondker A, Hub JS, Rheinstädter MC. Steroid-steroid interactions in biological membranes: cholesterol and cortisone[J]. Chemistry and Physics of Lipids, 2019, 221: 193-197
    [3] Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M. High cholesterol/low cholesterol: effects in biological membranes: a review[J]. Cell Biochemistry and Biophysics, 2017, 75(3/4): 369-385
    [4] Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release[J]. Drug Delivery and Translational Research, 2015, 5(3): 231-242
    [5] Hartz P, Strohmaier SJ, EL-Gayar BM, Abdulmughni A, Hutter MC, Hannemann F, Gillam EMJ, Bernhardt R. Resurrection and characterization of ancestral CYP11A1 enzymes[J]. The FEBS Journal, 2021, 288(22): 6510-6527
    [6] Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ1-dehydrogenases in steroid breakdown[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2019, 191: 105366
    [7] Christ B, Xu CC, Xu ML, Li FS, Wada N, Mitchell AJ, Han XL, Wen ML, Fujita M, Weng JK. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants[J]. Nature Communications, 2019, 10: 3206
    [8] 贾红晨, 李芳, 郑鑫铃, 崔慧林, 骆健美, 申雁冰, 王敏, 田妥, 丁安鹏. 甾体微生物转化反应关键酶3-甾酮-Δ1-脱氢酶的研究进展[J]. 微生物学通报, 2020, 47(7): 2218-2235 Jia HC, Li F, Zheng XL, Cui HL, Luo JM, Shen YB, Wang M, Tian T, Ding AP. Research progress of 3-ketosteroid-Δ1-dehydrogenase, a key enzyme for steroid microbial conversion[J]. Microbiology China, 2020, 47(7): 2218-2235(in Chinese)
    [9] Ding H, Zhao D, Gao YJ. Response surface optimization of cholesterol extraction from lanolin alcohol by selective solvent crystallization[J]. Chemical Papers, 2017, 71(1): 71-79
    [10] Pei HR, Ma XT, Pan Y, Han T, Lu ZF, Wu RJ, Cao XL, Zheng JM. Separation and purification of lanosterol, dihydrolanosterol, and cholesterol from lanolin by high-performance counter-current chromatography dual-mode elution method[J]. Journal of Separation Science, 2019, 42(12): 2171-2178
    [11] Xu XH, Liu YF, Du GC, Ledesma-Amaro R, Liu L. Microbial chassis development for natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 779-796
    [12] Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532
    [13] Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast[J]. Nature Biotechnology, 2003, 21(2): 143-149
    [14] Zhang RS, Zhang Y, Wang Y, Yao MD, Zhang JL, Liu H, Zhou X, Xiao WH, Yuan YJ. Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system[J]. ACS Synthetic Biology, 2019, 8(12): 2666-2678
    [15] Zhang Y, Wang Y, Yao MD, Liu H, Zhou X, Xiao WH, Yuan YJ. Improved campesterol production in engineered Yarrowia lipolytica strains[J]. Biotechnology Letters, 2017, 39(7): 1033-1039
    [16] Qu LS, Xiu X, Sun GY, Zhang CY, Yang HQ, Liu YF, Li JH, Du GC, Lv XQ, Liu L. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol[J]. Biotechnology and Bioengineering, 2022, 119(5): 1278-1289
    [17] Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390
    [18] Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74
    [19] Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, Ajikumar PK. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli[J]. PNAS, 2016, 113(12): 3209-3214
    [20] Xu JL, Xu X, Xu Q, Zhang ZD, Jiang L, Huang H. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids[J]. Bioprocess and Biosystems Engineering, 2018, 41(4): 489-499
    [21] Wu T, Ye LJ, Zhao DD, Li SW, Li QY, Zhang BL, Bi CH, Zhang XL. Membrane engineering -A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J]. Metabolic Engineering, 2017, 43: 85-91
    [22] Wang PP, Wei W, Ye W, Li XD, Zhao WF, Yang CS, Li CJ, Yan X, Zhou ZH. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019, 5: 5
    [23] Zhu M, Wang CX, Sun WT, Zhou AQ, Wang Y, Zhang GL, Zhou XH, Huo YX, Li C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50
    [24] Sun WT, Xue HJ, Liu H, Lv B, Yu Y, Wang Y, Huang ML, Li C. Controlling chemo-and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis[J]. ACS Catalysis, 2020, 10(7): 4253-4260
    [25] Xie WP, Lv XM, Ye LD, Zhou PP, Yu HW. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metabolic Engineering, 2015, 30: 69-78
    [26] Xu LP, Wang D, Chen J, Li B, Li QY, Liu PP, Qin Y, Dai ZB, Fan FY, Zhang XL. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production[J]. Metabolic Engineering, 2022, 70: 115-128
    [27] Xu SH, Chen C, Li YR. Engineering of phytosterol-producing yeast platforms for functional reconstitution of downstream biosynthetic pathways[J]. ACS Synthetic Biology, 2020, 9(11): 3157-3170
    [28] 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324 Zhou WL, Gao HF, Wu YL, Zhang X, Xu MJ, Yang TW, Shao ML, Rao ZM. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol[J]. CIESC Journal, 2021, 72(8): 4314-4324(in Chinese)
    [29] 苏皖, 刘悦, 周晓, 王颖. 生物合成7-脱氢胆甾醇酵母底盘的初探[J]. 化学工业与工程, 2017, 34(4): 83-90 Su W, Liu Y, Zhou X, Wang Y. The exploration of yeast chassis for 7-dehydrocholesterol biosynthesis[J]. Chemical Industry and Engineering, 2017, 34(4): 83-90(in Chinese)
    [30] Chen J, Fan FY, Qu G, Tang JL, Xi YY, Bi CH, Sun ZT, Zhang XL. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone[J]. Metabolic Engineering, 2020, 57: 31-42
    [31] Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nature Reviews Molecular Cell Biology, 2020, 21(4): 225-245
    [32] Hubler Z, Friedrich RM, Sax JL, Allimuthu D, Gao F, Rivera-León AM, Pleshinger MJ, Bederman I, Adams DJ. Modulation of lanosterol synthase drives 24, 25-epoxysterol synthesis and oligodendrocyte formation[J]. Cell Chemical Biology, 2021, 28(6): 866-875
    [33] Shinozaki J, Nakene T, Takano A. Squalene cyclases and cycloartenol synthases from Polystichum polyblepharum and six allied ferns[J]. Molecules: Basel, Switzerland, 2018, 23(8): 1843
    [34] Yu DB, Liao JK. Emerging views of statin pleiotropy and cholesterol lowering[J]. Cardiovascular Research, 2021, 118(2): 413-423
    [35] Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering strategies in microorganisms for the enhanced production of squalene: Advances, challenges and opportunities[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 50
    [36] Zhang TT, Yuan DW, Xie J, Lei YX, Li JG, Fang GQ, Tian L, Liu JC, Cui YY, Zhang M, et al. Evolution of the cholesterol biosynthesis pathway in animals[J]. Molecular Biology and Evolution, 2019, 36(11): 2548-2556
    [37] Olkkonen VM, Gylling H, Ikonen E. Plant sterols, cholesterol precursors and oxysterols: minute concentrations—major physiological effects[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 169: 4-9
    [38] Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol biosynthesis: a mechanistic overview[J]. Biochemistry, 2016, 55(39): 5483-5506
    [39] Hu D, Gao YH, Yao XS, Gao H. Recent advances in dissecting the demethylation reactions in natural product biosynthesis[J]. Current Opinion in Chemical Biology, 2020, 59: 47-53
    [40] Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol biosynthesis and uptake in developing neurons[J]. ACS Chemical Neuroscience, 2019, 10(8): 3671-3681
    [41] Nes WD. Biosynthesis of cholesterol and other sterols[J]. Chemical Reviews, 2011, 111(10): 6423-6451
    [42] Ačimovič J, Rozman D. Steroidal triterpenes of cholesterol synthesis[J]. Molecules: Basel, Switzerland, 2013, 18(4): 4002-4017
    [43] Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints[J]. Algal Research, 2020, 48: 101902
    [44] Pollier J, Vancaester E, Kuzhiumparambil U, Vickers CE, Vandepoele K, Goossens A, Fabris M. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis[J]. Nature Microbiology, 2019, 4(2): 226-233
    [45] Knoch E, Sugawara S, Mori T, Poulsen C, Fukushima A, Harholt J, Fujimoto Y, Umemoto N, Saito K. Third DWF1 paralog in Solanaceae, sterol Δ 24-isomerase, branches withanolide biosynthesis from the general phytosterol pathway[J]. PNAS, 2018, 115(34): E8096-E8103
    [46] Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aok Pohl TM, Rothstein R, Sturley SL. Sterol esterification in yeast: a two-gene process[J]. Science, 1996, 272(5266): 1353-1356teroidal glycoalkaloids in potato[J]. The Plant Cell, 2014, 26(9): 3763-3774
    [47] Du YL, Fu XZ, Chu YY, Wu PW, Liu Y, Ma LL, Tian HQ, Zhu BZ. Biosynthesis and the roles of plant sterols in development and stress responses[J]. International Journal of Molecular Sciences, 2022, 23(4): 2332
    [48] Alexander WG. A history of genome editing in Saccharomyces cerevisiae[J]. Yeast, 2018, 35(5): 355-360
    [49] Davy AM, Kildegaard HF, Andersen MR. Cell factory engineering[J]. Cell Systems, 2017, 4(3): 262-275
    [50] Xu SH, Li YR. Yeast as a promising heterologous host for steroid bioproduction[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(9/10): 829-843
    [51] Souza CM, Schwabe TME, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance[J]. Metabolic Engineering, 2011, 13(5): 555-569
    [52] Duport C, Spagnoli R, Degryse E, Pompon D. Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast[J]. Nature Biotechnology, 1998, 16(2): 186-189
    [53] Costa S, Zappaterra F, Summa D, Semeraro B, Fantin G. Δ1-dehydrogenation and C20 reduction of cortisone and hydrocortisone catalyzed by Rhodococcus strains[J]. Molecules, 2020, 25(9): 2192
    [54] Herráiz I. Chemical pathways of corticosteroids, industrial synthesis from sapogenins[J]. Methods in Molecular Biology: Clifton, N J, 2017, 1645: 15-27
    [55] Cheng J, Chen J, Liu XN, Li XC, Zhang WX, Dai ZB, Lu LN, Zhou X, Cai J, Zhang XL, et al. The origin and evolution of the diosgenin biosynthetic pathway in yam[J]. Plant Communications, 2021, 2(1): 100079
    [56] Uhía I, Galán B, Morales V, García JL. Initial step in the catabolism of cholesterol by Mycobacterium smegmatis Mc2155[J]. Environmental Microbiology, 2011, 13(4): 943-959
    [57] Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD. Cytochrome P450125(CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1[J]. Molecular Microbiology, 2009, 74(5): 1031-1043
    [58] Liang ZJ, Chen YB, Wang LP, Li D, Yang XC, Ma GF, Wang YH, Li YX, Zhao H, Liang Y, et al. CYP27A1 inhibits bladder cancer cells proliferation by regulating cholesterol homeostasis[J]. Cell Cycle, 2019, 18(1): 34-45
    [59] Galiano V, Villalaín J. Aggregation of 25-hydroxycholesterol in a complex biomembrane. Differences with cholesterol[J]. Biochimica et Biophysica Acta: BBA -Biomembranes, 2020, 1862(11): 183413
    [60] Chen Y, Xiao WH, Wang Y, Liu H, Li X, Yuan YJ. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113
    [61] Zerenturk EJ, Sharpe LJ, Ikonen E, Brown AJ. Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis[J]. Progress in Lipid Research, 2013, 52(4): 666-680
    [62] Quan XP, Chen XQ, Sun DL, Xu B, Zhao LL, Shi XQ, Liu HS, Gao B, Lu XL. The mechanism of the effect of U18666a on blocking the activity of 3β-hydroxysterol Δ-24-reductase (DHCR24): molecular dynamics simulation study and free energy analysis[J]. Journal of Molecular Modeling, 2016, 22(2): 46
    [63] Guo XJ, Xiao WH, Wang Y, Yao MD, Zeng BX, Liu H, Zhao GR, Yuan YJ. Metabolic engineering of Saccharomyces cerevisiae for 7-dehydrocholesterol overproduction[J]. Biotechnology for Biofuels, 2018, 11(7): 192
    [64] Zou L, Li L, Porter TD. 7-Dehydrocholesterol reductase activity is independent of cytochrome P450 reductase[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(3/4/5): 435-438
    [65] Du HX, Xiao WH, Wang Y, Zhou X, Zhang Y, Liu D, Yuan YJ. Engineering Yarrowia lipolytica for campesterol overproduction[J]. PLoS One, 2016, 11(1): e0146773
    [66] Pickens LB, Tang Y, Chooi YH. Metabolic engineering for the production of natural products[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 211-236
    [67] He WS, Cui DD, Li LL, Tong LT, Rui JX, Li H, Zhang HJ, Liu XQ. Cholesterol-reducing effect of ergosterol is modulated via inhibition of cholesterol absorption and promotion of cholesterol excretion[J]. Journal of Functional Foods, 2019, 57: 488-496
    [68] Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5, 7-Dien-3β-ol accumulation by metabolic engineering[J]. World Journal of Microbiology & Biotechnology, 2018, 34(4): 55
    [69] Su W, Xiao WH, Wang Y, Liu D, Zhou X, Yuan YJ. Alleviating redox imbalance enhances 7-dehydrocholesterol production in engineered Saccharomyces cerevisiae[J]. PLoS One, 2015, 10(6): e0130840
    [70] Hassan JU, Kaleem I, Rasool A, Xu K, Adnan Tahir R, Lv B, Li C. Engineered Saccharomyces cerevisiae for the de novo synthesis of the aroma compound longifolene[J]. Chemical Engineering Science, 2020, 226: 115799
    [71] Westfall PJ, Pitera DJ, Lenihan JR, Eng DA, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. PNAS, 2012, 109(3): E111-E118
    [72] 张文倩, 周晓, 肖文海, 王颖. 人工酵母后鲨烯路径基因对7-脱氢胆固醇合成的影响[J]. 中国生物工程杂志, 2016, 36(6): 39-50 Zhang WQ, Zhou X, Xiao WH, Wang Y. Effect of post-squalene genes on the synthesis of 7-dehydrocholesterol in the artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50(in Chinese)
    [73] Guo XJ, Yao MD, Xiao WH, Wang Y, Zhao GR, Yuan YJ. Compartmentalized reconstitution of post-s qualene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2021, 12: 663973
    [74] Zhang CZ, Hong K. Production of terpenoids by synthetic biology approaches[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 347
    [75] Dusséaux S, Wajn WT, Liu YX, Ignea C, Kampranis SC. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31789-31799
    [76] Qian YD, Tan SY, Dong GR, Niu YJ, Hu CY, Meng YH. Increased campesterol synthesis by improving lipid content in engineered Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2020, 104(16): 7165-7175
    [77] Polburee P, Ohashi T, Tsai YY, Sumyai T, Lertwattanasakul N, Limtong S, Fujiyama K. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253[J]. Microbiology: Reading, England, 2018, 164(1): 1-10
    [78] Yu Y, Rasool A, Liu HR, Lv B, Chang PC, Song H, Wang Y, Li C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool[J]. Metabolic Engineering, 2020, 62: 72-83
    [79] Su WC, Lin YH, Pagac M, Wang CW. Seipin negatively regulates sphingolipid production at the ER-LD contact site[J]. The Journal of Cell Biology, 2019, 218(11): 3663-3680
    [80] Wolinski H, Hofbauer HF, Hellauer K, Cristobal-Sarramian A, Kolb D, Radulovic M, Knittelfelder OL, Rechberger GN, Kohlwein SD. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast[J]. Biochimica et Biophysica Acta: BBA -Molecular and Cell Biology of Lipids, 2015, 1851(11): 1450-1464
    [81] Ma T, Shi B, Ye ZL, Li XW, Liu M, Chen Y, Xia J, Nielsen J, Deng ZX, Liu TG. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134-142
    [82] Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G,
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李月,庞亚如,成旭,李春,吕波. 酿酒酵母中胆固醇生物合成与优化的研究进展[J]. 微生物学通报, 2022, 49(11): 4869-4885

复制
分享
文章指标
  • 点击次数:345
  • 下载次数: 2262
  • HTML阅读次数: 1654
  • 引用次数: 0
历史
  • 收稿日期:2022-04-06
  • 最后修改日期:2022-06-06
  • 录用日期:2022-06-06
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码