Abstract:[Background] As one of the common non-tuberculous conditionally pathogenic mycobacteria, Mycobacteroides abscessus is a major clinical challenge because of its natural multi-drug resistance. Mycobactin (MBT) and carboxymycobactin (cMBT), the crucial systems for mycobacteria to acquire iron, one of the limiting nutrients, are closely associated with virulence and drug resistance. [Objective] To reveal the structure of MBT in M. abscessus and explore the evolution of MBT in pathogenic mycobacteria. [Methods] The structures of MBT and cMBT were analyzed by MALDI-TOF-MS and FT-MS/MS. Further, the biological activities of MBT and cMBT were determined. The MBT biosynthesis gene clusters were compared between M. abscessus and several representative mycobacteria. [Results] M. abscessus and M. marinum had similar modification patterns of MBT and cMBT core structure. In particular, the modifying groups at R1, R2, R3, and R5 were exactly the same, and the fatty acid chains were both located at R4. However, the MBT and cMBT of M. abscessus are a new structure because of the different lengths of the fatty acid chains (10-17 C for MBT and 4-8 C for cMBT). The growth of M. abscessus in iron-deprived media could be significantly recovered by supplying with Fe-cMBT in a dosage-dependent manner, and M. abscessus can much efficiently absorb Fe-cMBT than FeCl3, which proved that MBT-cMBT system was vital for M. abscessus to acquirie iron from the environment. Synteny and phylogenetic analysis of the MBT biosynthetic gene cluster mbt-1 showed that M. abscessus was closely related to M. marinum rather than M. tuberculosis and M. smegmatis (referring to 16S rRNA gene phylogenetic tree). This result is consistent with that based on the structure of MBT. Further analysis revealed that the variation range of the fatty acid chain length of pathogenic mycobacteria such as M. marinum, M. tuberculosis, and M. bovis was only 4 C, while that of conditionally pathogenic and non-pathogenic bacteria such as M. abscessus, M. fortuitum, M. avium, and M. smegmatis was 7-11 C, which suggested that the range variation of fatty acid chain length of MBT might be associated with the lifestyles and habitats of mycobacteria. [Conclusion] As an important system for obtaining iron with unique structure, M. abscessus MBT deserved further study, especially its roles in pathogenesis and drug resistance, as well as its evolution in pathogenic mycobacteria.