科微学术

微生物学通报

诺卡氏菌烈性噬菌体vB_Ncarnea_KYD1的分离纯化与基因组分析
作者:
基金项目:

中央高校基本科研业务费专项资金; 魏桥国科低碳技术专项(GYY-DTFZ-2022-008)


Isolation, purification, and genomic analysis of the virulent phage vB_Ncarnea_KYD1 from Nocardia spp.
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】诺卡氏菌是一种广泛分布的好氧放线菌,可在人体内引起局部或播散性感染,尤其是在免疫功能低下的个体中。诺卡氏菌感染在临床上较难鉴定,而且不断有新型诺卡氏菌种被发现。不同类型、不同地域的诺卡氏菌具有流行差异和抗生素敏感性差异,阻碍了适当治疗方式的选择。利用病灶处的宿主菌分离得到噬菌体来控制诺卡氏菌感染的这种方法在近年来受到了各界的关注。【目的】尝试从环境中分离出能够用于临床治疗的针对诺卡氏菌的烈性噬菌体,并研究其基因组学特征。【方法】利用双层平板法分离得到目标噬菌体,观察其噬菌斑形态,并对噬菌体进行分离纯化,在透射电镜下鉴定其特征。提取噬菌体DNA进行全基因组测序与注释,并与数据库内已知噬菌体基因组进行比较,同时构建系统进化树以进行遗传进化分析。【结果】本文以肉色诺卡氏菌为宿主,从环境样本中分离出一株烈性噬菌体vB_Ncarnea_KYD1,在双层平板上可形成直径<2 mm的透亮均匀的噬菌斑。基因组分析表明,vB_Ncarnea_KYD1DNA为环状,大小为66 621 bp,共发现102个蛋白质编码区(coding sequence,CDS)及一个tRNA-Ser编码序列。透射电镜观察与系统进化树综合分析可以确定,vB_Ncarnea_KYD1为长尾噬菌体科的一个新属。其在进化过程中经历了复杂的基因重组过程。暂未发现毒力因子相关基因与抗性基因,具备实用价值。【结论】从环境水体中分离出一株烈性肉色诺卡氏菌噬菌体vB_Ncarnea_KYD1,通过电镜观察与基因组分析可知,此株噬菌体为长尾噬菌体,基因组中暂未发现不利于临床应用的相关基因,是一株相对安全的烈性诺卡氏菌噬菌体。研究结果丰富了国内噬菌体资源库,并为后续诺卡氏菌感染疾病的治疗提供支持。

    Abstract:

    [Background] Nocardia belongs to aerobic actinomycete. Being widely distributed, Nocardia can cause local or disseminated infection in human, especially in those with low immune function. The Nocardia infection is difficult to be clinically identified, and novel Nocardia strains are constantly being discovered. Different types of Nocardia from different regions have different prevalences and antibiotic sensitivities, which hinders the treatment. The treatment of Nocardia infection by the phage isolated from the host bacteria at the lesion has attracted great attention in recent years. [Objective] To isolate the virulent phage against Nocardia from the environment that can be used in clinic and explore the genomic characteristics. [Methods] The target phage was isolated by the double-layer plate method, and the plaque morphology was observed. The phage was purified, and the characteristics were observed through the transmission electron microscope. The DNA of the phage was extracted, and the whole genome was sequenced, annotated, and compared with the known phage genomes in the database. The phylogenetic tree was constructed for genetic evolution analysis. [Results] The virulent phage vB_Ncarnea_KYD1 with Nocardia carnea as the host, isolated from the environmental samples, formed transparent and uniform plaques with a diameter <2 mm on the double-layer plate. Genome analysis showed that the DNA of vB_Ncarnea_KYD1 was circular with a size of 66 621 bp. A total of 102 proteins and 1 tRNA-Ser were found in coding sequences (CDS). According to the transmission electron microscope observation and phylogenetic tree analysis, vB_Ncarnea_KYD1 was a new phage in the Siphophages, which experienced complex gene recombination in the evolution. vB_Ncarnea_KYD1 had practical value, and no virulence factor-related genes or antibiotic-resistance genes were found. [Conclusion] The novel virulent phage vB_Ncarnea_KYD1 of N. carnea was isolated from the environmental water sample. The transmission electron microscope observation and genome analysis showed that vB_Ncarnea_KYD1 belonged to the Siphophages. Since no relevant genes unfavorable to clinical application were found in the genome, vB_Ncarnea_KYD1 was a relatively safe virulent phage of Nocardia The findings of this study provided references for the follow-up treatment of Nocardia infection, and enriched the domestic phage resources.

    参考文献
    [1] 张媛, 张媛媛, 李振军, 万康林. 诺卡氏菌研究进展[J]. 中国人兽共患病学报, 2012, 28(6): 628-634 Zhang Y, Zhang YY, Li ZJ, Wan KL. Research progress on Nocardia[J]. Chinese Journal of Zoonoses, 2012, 28(6): 628-634(in Chinese)
    [2] Radcliffe C, Peaper D, Grant M. Nocardia veterana infections: case report and systematic review[J]. New Microbes and New Infections, 2020, 39: 100833
    [3] Lynch JP III, Reid G, Clark NM. Nocardia spp.: a rare cause of pneumonia globally[J]. Seminars in Respiratory and Critical Care Medicine, 2020, 41(4): 538-554
    [4] Taj-Aldeen SJ, Deshmukh A, Doiphode S, Abdul Wahab A, Allangawi M, AlMuzrkchi A, Klaassen CH, Meis JF. Molecular identification and susceptibility pattern of clinical Nocardia species: emergence of Nocardia crassostreae as an agent of invasive nocardiosis[J]. Canadian Journal of Infectious Diseases and Medical Microbiology, 2013, 24: 256025
    [5] Akgün Y, Ozsan K. Multiple skin abscesses caused by Nocardia carnea[J]. Mikrobiyoloji Bulteni, 1985, 19(2): 100-103
    [6] Guedez López GV, Rodríguez Tejedor M, de Pablos Gómez M, Sánchez Castellano M, Díaz Pollán B, Cadiñanos Loidi J, Mora M, Mingorance J, de Miguel Buckley R. Pacemaker pocket infection by Nocardia carnea. First case description and literature review[J]. Microbes and Infection, 2022, 24(4): 104944
    [7] Uhde KB, Pathak S, McCullum I, Jannat-Khah DP, Shadomy SV, Dykewicz CA, Clark TA, Smith TL, Brown JM. Antimicrobial-resistant Nocardia isolates, United States, 1995-2004[J]. Clinical Infectious Diseases, 2010, 51(12): 1445-1448
    [8] Larruskain J, Idigoras P, Marimón JM, Pérez-Trallero E. Susceptibility of 186Nocardia sp. isolates to 20 antimicrobial agents[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(6): 2995-2998
    [9] 李思源, 王国良, 徐益军. 养殖鱼类诺卡氏菌病的危害及防治[J]. 科学养鱼, 2010(5): 52 Li SY, Wang GL, Xu YJ. Hazards and control of nocardiosis in cultured fish[J]. Scientific Fish Farming, 2010(5): 52(in Chinese)
    [10] 朱志东, 吕莉, 邓剑壕, 冯豆, 许佳楠, 蔡延渠, 辛年香, 朱盛山. 鱼类诺卡氏菌病的研究进展[J]. 水产养殖, 2018, 39(1): 48-52 Zhu ZD, Lu L, Deng JH, Feng D, Xu JN, Cai YQ, Xin NX, Zhu SS. Research review of fish nocardiosis[J]. Journal of Aquaculture, 2018, 39(1): 48-52(in Chinese)
    [11] 多甜, 张超, 赵晓进, 李莉, 裴超, 吕爱军. 鰤鱼诺卡氏菌研究进展[J]. 水产科学, 2017, 36(3): 391-394 Duo T, Zhang C, Zhao XJ, Li L, Pei C, Lü AJ. A review of research progress of Nocardia seriolae[J]. Fisheries Science, 2017, 36(3): 391-394(in Chinese)
    [12] 宋阳, 姜成英, 王爱杰, 刘双江. 城市污水处理厂活性污泥生物泡沫研究进展[J]. 微生物学通报, 2019, 46(8): 1954-1970 Song Y, Jiang CY, Wang AJ, Liu SJ. Research progress towards biological foaming of activated sludge in municipal wastewater treatment plants[J]. Microbiology China, 2019, 46(8): 1954-1970(in Chinese)
    [13] Ujmajuridze A, Chanishvili N, Goderdzishvili M, Leitner L, Mehnert U, Chkhotua A, Kessler TM, Sybesma W. Adapted bacteriophages for treating urinary tract infections[J]. Frontiers in Microbiology, 2018, 9: 1832
    [14] Nikapitiya C, Dananjaya SHS, Chandrarathna HPSU, Senevirathne A, Zoysa M, Lee J. Isolation and characterization of multidrug resistance Aeromonas salmonicida subsp. salmonicida and its infecting novel phage ASP-1 from goldfish (Carassius auratus)[J]. Indian Journal of Microbiology, 2019, 59(2): 161-170
    [15] Chibeu A, Balamurugan S. Application of a virucidal agent to avoid overestimation of phage kill during phage decontamination assays on ready-to-eat meats[J]. Methods in Molecular Biology: Clifton, N J, 2018, 1681: 97-105
    [16] Petrovski S, Seviour RJ, Tillett D. Genome sequence and characterization of the Tsukamurella bacteriophage TPA2[J]. Applied and Environmental Microbiology, 2011, 77(4): 1389-1398
    [17] Moineau S, Pandian S, Klaenhammer TR. Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome[J]. Applied and Environmental Microbiology, 1994, 60(6): 1832-1841
    [18] Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Research, 2016, 44(W1): W16-W21
    [19] Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions[J]. Electrophoresis, 1994, 15(1): 529-539
    [20] Liu B, Zheng DD, Jin Q, Chen LH, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Research, 2019, 47(D1): D687-D692
    [21] Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(11): 2640-2644
    [22] Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Research, 2016, 44(W1): W54-W57
    [23] Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3): 567-580
    [24] Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView[J]. Bioinformatics, 2010, 26(24): 3125-3126
    [25] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations[J]. Nature Methods, 2010, 7(4): 248-249
    [26] 何洋, 秦旭颖, 荆兆元, 杨洪江. 一株类志贺邻单胞菌噬菌体生物学特性及全基因组分析[J]. 微生物学报, 2022, 62(2): 650-660 He Y, Qin XY, Jing ZY, Yang HJ. Biological characteristics and genomic analysis of a Plesiomonas shigelloides phage phiP4-7[J]. Acta Microbiologica Sinica, 2022, 62(2): 650-660(in Chinese)
    [27] Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, et al. Origins of highly mosaic mycobacteriophage genomes[J]. Cell, 2003, 113(2): 171-182
    [28] Duda RL, Oh B, Hendrix RW. Functional domains of the HK97 capsid maturation protease and the mechanisms of protein encapsidation[J]. Journal of Molecular Biology, 2013, 425(15): 2765-2781
    [29] Maxwell KL, Davidson AR. A shifty chaperone for phage tail assembly[J]. Journal of Molecular Biology, 2014, 426(5): 1001-1003
    [30] Bernhardt TG, Wang IN, Struck DK, Young R. A protein antibiotic in the phage qβ virion: diversity in lysis targets[J]. Science, 2001, 292(5525): 2326-2329
    [31] Srividhya KV, Krishnaswamy S. Subclassification and targeted characterization of prophage-encoded two-component cell lysis cassette[J]. Journal of Biosciences, 2007, 32(5): 979-990
    [32] Mesnage S, Foster SJ. N-acetylmuramoyl-l-alanine amidase[M]. Handbook of Proteolytic Enzymes. Amsterdam, Netherlands: Elsevier, 2013: 1401-1407
    [33] 史一博. 猪链球菌噬菌体穿孔素(holin)基因的定位、功能确认及生物学特性研究[D]. 上海: 上海交通大学博士学位论文, 2012 Shi YB. Identification and characterization of holin gene from Streptococcus suis phage[D]. Shanghai: Doctoral Dissertation of Shanghai Jiao Tong University, 2012(in Chinese)
    [34] Dyson ZA, Tucci J, Seviour RJ, Petrovski S. Lysis to kill: evaluation of the lytic abilities, and genomics of nine bacteriophages infective for Gordonia spp. and their potential use in activated sludge foam biocontrol[J]. PLoS One, 2015, 10(8): e0134512
    [35] Petrovski S, Seviour RJ, Tillett D. Genome sequence and characterization of a Rhodococcus equi phage REQ1[J]. Virus Genes, 2013, 46(3): 588-590
    [36] Taylor S, Brown TL, Tucci J, Lock P, Seviour RJ, Petrovski S. Isolation and characterization of bacteriophage NTR1 infectious for Nocardia transvalensis and other Nocardia species[J]. Virus Genes, 2019, 55(2): 257-265
    [37] 王景程, 卢虎强. 诺卡氏菌致全身多发感染1例[J]. 临床急诊杂志, 2018, 19(10): 709-712 Wang JC, Lu HQ. One case of recurrent infection caused by Nocardia[J]. Journal of Clinical Emergency, 2018, 19(10): 709-712(in Chinese)
    [38] Valdezate S, Garrido N, Carrasco G, Medina-Pascual MJ, Villalón P, Navarro AM, Saéz-Nieto JA. Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain[J]. Journal of Antimicrobial Chemotherapy, 2016, 72(3): 754-761
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

熊文斌,卢晗,刘新春. 诺卡氏菌烈性噬菌体vB_Ncarnea_KYD1的分离纯化与基因组分析[J]. 微生物学通报, 2022, 49(11): 4832-4847

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-10
  • 最后修改日期:2022-04-20
  • 录用日期:2022-04-20
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码