科微学术

微生物学通报

短头熊蜂肠道拮抗菌株的分离筛选鉴定及其生物特性评价
作者:
基金项目:

云南省基础研究专项(CB22052C156A); 国家自然科学基金(31660695)


Isolation, screening, identification, and biological characterization of antagonistic strains in intestinal tract of Bombus breviceps
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】近年来,由于栖息地减少、农药的大量使用及病原菌侵染等综合因素,导致全世界的熊蜂种类与数量逐年减少,病原菌的侵染可通过微生物在自身生长过程中会产生的抑菌物质进行有效抑制或杀灭。【目的】短头熊蜂(Bombus breviceps)长期生存在野外环境中,其肠道内存在着大量微生物资源。从短头熊蜂肠道内筛选拮抗菌株,并对其抑菌特性进行研究。【方法】采用牛津杯双层法筛选拮抗菌株,测定抑菌活性最佳菌株发酵液的抑菌物质稳定性与抑菌广谱性等抑菌特性,并借助细胞膜通透性、流式细胞仪检测等试验探究其抑菌机制。【结果】得到了5株具有明显抑菌作用的拮抗菌株,其中果杆菌(Fructobacillus tropaeoli)CZ01对金黄色葡萄球菌(Staphylococcus aureus)、沙门氏菌(Salmonella choleraesuis)、大肠杆菌(Escherichia coli)、福氏志贺氏菌(Shigella flexneri)和无乳链球菌(Streptococcus agalactiae)这5种病原指示菌都具有高度抑菌效果。菌株CZ01对金黄色葡萄球菌的抑菌效果最佳,抑菌圈直径可达到(21.21±0.25) mm,在121 ℃处理后仍具有67.36%以上的抑菌活性,调整pH值为10.0时仍具有78.16%的抑菌活性。【结论】短头熊蜂肠道微生物资源较丰富,尤其是果杆菌(F.tropaeoli)CZ01具有抑菌活性高、稳定性好、抑菌谱广等特性,对金黄色葡萄球菌具有良好的杀灭效果,显示出良好的应用潜能。

    Abstract:

    [Background] In recent years, bumblebee species and number have been decreasing worldwide due to habitat reduction, abuse of pesticides, and infection of pathogens. The pathogens can be effectively killed by the antimicrobial substances produced by microorganisms during their growth. [Objective] Bombus breviceps lives in the wild for a long time and has rich microbial resources in the intestinal tract. We screened antagonistic strains from the intestinal tract of B. breviceps and studied their antibacterial properties. [Methods] The Oxford cup double-layer method was used to screen out the antagonistic strains and determine the stability of antibacterial substances and the inhibition spectrum of the fermentation broth of the strains with strong inhibitory activity. Further, cell membrane permeability and flow cytometry were employed to investigate the inhibition mechanism. [Results] Five antagonistic strains with significant antibacterial effect were obtained, among which Fructobacillus tropaeoli CZ01 demonstrated strong inhibitory effect on all the five indicator bacteria: Staphylococcus aureus, Salmonella choleraesuis, Escherichia coli, Shigella flexneri, and Streptococcus agalactiae. It showed the strongest inhibitory effect on Staphylococcus aureus, with an inhibition zone diameter of (21.21±0.25) mm. Moreover, the inhibitory activity was still 67.36% after treatment at 121 ℃ and 78.16% after the medium was adjusted to pH 10.0. [Conclusion] B. breviceps carries rich microbial resources in intestinal tract. In particular, F. tropaeoli CZ01 with high antibacterial activity, good stability, and wide intestinal spectrum, has good killing effect on S. aureus and demonstrates good application potential.

    参考文献
    [1] 刘新宇, 高崇东. 熊蜂人工繁育与授粉应用[M]. 杨凌: 西北农林科技大学出版社, 2011 Liu XY, Gao CD. Artificial Breeding and Pollination of Bumblebee[M]. Yangling: Northwest Agriculture and Forestry University Press, 2011(in Chinese)
    [2] Cameron SA, Sadd BM. Global trends in bumble bee health[J]. Annual Review of Entomology, 2020, 65: 209-232
    [3] Sun C, Huang JX, Wang Y, Zhao XM, Su L, Thomas GWC, Zhao MY, Zhang XT, Jungreis I, Kellis M, et al. Erratum to: genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits[J]. Molecular Biology and Evolution, 2021, 38(7): 3031
    [4] 黄训兵, 李辉, 代晓彦, 吴光安, 周浩, 陈浩, 郑礼, 翟一凡. 熊蜂行为特性与授粉应用研究进展[J]. 山东农业科学, 2021, 53(8): 130-137 Huang XB, Li H, Dai XY, Wu GA, Zhou H, Chen H, Zheng L, Zhai YF. Research progress of bumblebee behavior and pollination application[J]. Shandong Agricultural Sciences, 2021, 53(8): 130-137(in Chinese)
    [5] 黄家兴, 安建东, 吴杰, 国占宝. 熊蜂为温室茄属作物授粉的优越性[J]. 中国农学通报, 2007, 23(3): 5-9 Huang JX, An JD, Wu J, Guo ZB. Advantage of bumblebee as pollinator for Solanum in greenhouse[J]. Chinese Agricultural Science Bulletin, 2007, 23(3): 5-9(in Chinese)
    [6] Ayasse M, Jarau S. Chemical ecology of bumble bees[J]. Annual Review of Entomology, 2014, 59: 299-319
    [7] Soroye P, Newbold T, Kerr J. Climate change contributes to widespread declines among bumble bees across continents[J]. Science, 2020, 367(6478): 685-688
    [8] Kwong WK, Engel P, Koch H, Moran NA. Genomics and host specialization of honey bee and bumble bee gut symbionts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11509-11514
    [9] 彭文君, 黄家兴, 吴杰, 安建东. 华北地区六种熊蜂的地理分布及生态习性[J]. 昆虫知识, 2009, 46(1): 115-120, 168 Peng WJ, Huang JX, Wu J, An JD. Geographic distribution and bionomics of six bumblebee species in north China[J]. Chinese Bulletin of Entomology, 2009, 46(1): 115-120, 168(in Chinese)
    [10] Liang C, Ding GL, Huang JX, Zhang XW, Miao CH, An JD. Characteristics of the two Asian bumblebee species Bombus friseanus and Bombus breviceps (Hymenoptera: Apidae)[J]. Insects, 2020, 11(3): 163
    [11] Dijkstra KDB, Monaghan MT, Pauls SU. Freshwater biodiversity and aquatic insect diversification[J]. Annual Review of Entomology, 2014, 59: 143-163
    [12] Almasia NI, Molinari MP, Maroniche GA, Nahirñak V, Barón MPB, Taboga OA, Rovere CV. Successful production of the potato antimicrobial peptide snakin-1 in baculovirus-infected insect cells and development of specific antibodies[J]. BMC Biotechnology, 2017, 17(1): 75
    [13] 裘婷婷, 谢辛慈, 施莹, 彭亚明, 沈熠菁, 陈勇, 吕正兵, 聂作明. 昆虫抗菌肽的研究与开发进展[J]. 药物生物技术, 2015, 22(6): 545-548 Qiu TT, Xie XC, Shi Y, Peng YM, Shen YJ, Chen Y, Lv ZB, Nie ZM. Advances in research and development of insect antibacterial peptide[J]. Pharmaceutical Biotechnology, 2015, 22(6): 545-548(in Chinese)
    [14] Killer J, Kopecný J, Mrázek J, Rada V, Dubná S, Marounek M. Bifidobacteria in the digestive tract of bumblebees[J]. Anaerobe, 2010, 16(2): 165-170
    [15] Fisher K, Watrous KM, Williams NM, Richardson LL, Woodard SH. A contemporary survey of bumble bee diversity across the state of California[J]. Ecology and Evolution, 2022, 12(3): e8505
    [16] 雷清芝, 汪思凡, 殷桦娟, 程燕东, 余行, 潘洪彬, 林秋叶, 曹振辉. 罗伊氏乳杆菌LP4对东方蜜蜂成年工蜂存活率、肠道菌群结构和抗菌肽mRNA表达量的影响[J]. 云南农业大学学报(自然科学), 2020, 35(5): 796-803 Lei QZ, Wang SF, Yin HJ, Cheng YD, Yu H, Pan HB, Lin QY, Cao ZH. Effects of Lactobacillus reuteri LP4 on the survival rate, intestinal microbiota composition and gut antimicrobial peptide gene expression in adult workers of Apis cerana fabricius[J]. Journal of Yunnan Agricultural University: Natural Science, 2020, 35(5): 796-803(in Chinese)
    [17] Li HW, Xiang YZ, Zhang M, Jiang YH, Zhang Y, Liu YY, Lin LB, Zhang QL. A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: isolation, purification, identification, antibacterial and antibiofilm activity[J]. LWT, 2021, 140: 110826
    [18] 唐裕杰. 熊蜂短膜虫与肠道菌研究[D]. 北京: 中国农业科学院硕士学位论文, 2019 Tang YJ. Study on Crithidia and gut bacteria in bumblebee[D]. Beijing: Master’s Thesis of Chinese Academy of Agricultural Sciences, 2019(in Chinese)
    [19] 陈奕霏. 云南地区部分野生蜂肠道菌群多样性研究[D]. 昆明: 昆明理工大学硕士学位论文, 2021 Chen YF. Study on gut microbiota of a part of wild bees in Yunnan[D]. Kunming: Master’s Thesis of Kunming University of Science and Technology, 2021(in Chinese)
    [20] 江宇航, 李宏伟, 杨晓洁, 林连兵, 张棋麟. 马尾松毛虫肠道产细菌素细菌的筛选及抑菌特性[J]. 微生物学通报, 2021, 48(1): 123-134 Jiang YH, Li HW, Yang XJ, Lin LB, Zhang QL. Screening and antibacterial activity of bacteriocin-producing bacteria in intestine of Dendrolimus punctatus[J]. Microbiology China, 2021, 48(1): 123-134(in Chinese)
    [21] 朱成科, 王建, 周燕, 雷骆, 邓星星, 蒲德成, 郑宗林, 周朝伟, 郑永华. 150种中草药体外抑杀维氏气单胞菌的药效研究[J]. 淡水渔业, 2018, 48(1): 80-85, 96 Zhu CK, Wang J, Zhou Y, Lei L, Deng XX, Pu DC, Zheng ZL, Zhou CW, Zheng YH. Antimicrobial activities for 150 kinds of Chinese herbal medicines agsinst Aeromonas veronii 祩??楶??慲捯琼漯扩愾捛楊汝氮甠獆?灥汳慨湷瑡慴牥畲洠??楳???奩???映爲漰洱?本漠水搸攨渱?挺愠爸瀰?椸渵琬攠猹琶椨湩敮嬠?嵨???潳潥搩?卢捲椾敛渲挲敝?憛滴撗??楟澇琪攬挠案滗濨氬漠析禎??㈠と????㈠???????????パ??抠牓?密??巆??牛椉摴斚狊?????楐洰氱憄溑擌???????资???挚梥愬爠搲‰夲???挴?用氱氩攺渠′???′倵爵??????癇漬猠瑊????吠桙效?挠潃湨瑥楮渠畓楙測朠?獵琠潍牙礬?潚晨?捵氠慈獂猬???慡?执愠捑瑌攬爠楌潩据椠湌獂嬮?嵓???楥据物潮执椠潡汮潤朠祩?慥湮摴??潩汣敡捴畩汯慮爠??椠潢污潣杴祥?剩敯癣楩敮眭獰?????剩??㈠ぢち????ど?㈠???????????扳牴?孮??崠??漠氼湩放獓桩楮湯?????潣牨?????圠楧汲污楨慡浭獩漼港?举??噮攠穄楩湡慮????噡慮湤?呴周????慴祩?????卲浩楡瑬栠??呦???椠獯捦漠癢敡牣祴?慲湩摯?捩桮愠牌慓捐琰攱牛楊獝愮琠楍潩湣?潯晢?捯楬牯捧畹氠慃牨?扮慡挬琠攲爰椲漲挬椠渴?瀨氱愩渺琠愲挴礲挭氲椵渵???ㄠ???普牥潳浥??楢??慛挲琳楝瀠汊慡湮瑡楳扨慩捡椠汉氬甠獁?灡汵慸渠瑃愮爠畓浰??楩???㈠?孭?嵵???敳汴楩祭潵湬???は??????????敥の?????扡牣?孥??嵡?婩桮愠潨?剮塥???略?女儠??剩愾湈??????楴?????敁楰?卤??娼栯畩 ̄天??塝甮?????偮畡牬椠景楦挠慅瑣楯潮湯?慩湣搠?据桴慯牭慯捬瑯敧特椬稠愲琰椱漶測?漱昰?戨愳挩琺攠爱椴漷挴椭渱?瀷爷漼摢畲挾敛搲?扝礠??榙??愴捰琬漠拭憛挬椠汎泧疲献?牱栟懌涤渨澊猂生獿??槇??窄犨码ヘㄖ孛?嵝???濽澜搚??椬漠猲挰椱攴測挠攴??㈱?㈩??′???????????戠牌?嬬??嵵?偊攬渠杇?卯???匠潌湩朠?????婹敮湡杭?坣夠??坲慩湡杴??坮??婦栠慳湹杭?奩??塴楳渠??圠??卭畢潬??奥????扵牲潩慮摧?獨灯敳捴瑳爠畧浲?湷潴癨攠污?扤愠捤瑥敶牥楬潯捰業湥?灴牛潊摝甮挠敓摣?扥祮??楡??慧捲瑩潣扵慬捴極汲污甠獓?灮汩慣湡琬愠爲田洱??椠??匨?夰?呼ㄠ?日″昰爭漲洰″礷愨歩?礠潃杨畩牮瑥??瀩甼牢楲显楛挲愵瑝椠潋湯??愠湈琬椠浓楣捨牭潩扤椭慈汥?捰桥慬爠慐挮琠敓牯楣獩瑡楬捬獹?慴湲摡?慳湭瑩楴扴慥捤琠敧牵楴愠汭?浣敲捯桢慩湯楴獡洠孰?嵯???坴吠???ぢ???????????ど????扡牮?孩??嵥?奴敩?偡塬??坡慲湡杳??坥???椮甠??????楤?偮???畯?儠??健甠牎楡晴楩捯慮瑡楬漠湁?慡湤摥?捹栠慯牦愠捓瑣敩牥楮穣慥瑳椠潯湦?潴晨?愠?湮潩癴敥汤?打慴捡瑴敥牳椠潯捦椠湁?晥牲潩浣??椠??愱挱琬漠戱愰挸椨水永甩猺?瀱愹爲愸挸愭猱改椲??椼??娾????嬠?嵯???圠呚??㈠え?????????ㄠ?????n ILG. Interactions between cooccurring lactic acid bacteria in honey bee hives[J]. Applied and Environmental Microbiology, 2015, 81(20): 7261-7270
    [27] Zhao HB, Cai CE, Liu XY, Jiao BH, Chen B, Cai MH, He PM. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria[J]. Open Life Sciences, 2018, 13: 11-21
    [28] Zhang Y, Yang JM, Liu Y, Wu YQ, Fang ZJ, Wang YL, Sun LJ, Deng Q, Gooneratne R, Xiao LX. A novel bacteriocin PE-ZYB1 produced by Pediococcus pentosaceus zy-B isolated from intestine of Mimachlamys nobilis: purification, identification and its anti-listerial action[J]. LWT, 2020, 118: 108760
    [29] Lü XR, Miao LH, Ma HH, Bai FL, Lin Y, Sun MT, Li JR. Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced b
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹喆,周晨烨,李丹,贺兰婷,丛越飞,李万里,黄琪,唐启河,郭军. 短头熊蜂肠道拮抗菌株的分离筛选鉴定及其生物特性评价[J]. 微生物学通报, 2022, 49(11): 4798-4808

复制
分享
文章指标
  • 点击次数:228
  • 下载次数: 733
  • HTML阅读次数: 922
  • 引用次数: 0
历史
  • 收稿日期:2022-04-20
  • 最后修改日期:2022-07-06
  • 录用日期:2022-07-06
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码