科微学术

微生物学通报

一株海洋来源铜绿假单胞菌Gxun-7角蛋白酶基因的克隆、表达及重组酶酶学性质
作者:
基金项目:

广西壮族自治区科技重点研发计划(AA18242026, AB21196019, AB221220020); 广西壮族自治区自然科学基金(2018GXNSFAA28113, 2019GXNSFAA185003); 国家自然科学基金(31660022, 32060020); 广西壮族自治区研究生教育创新计划(YCSW2021156); 广西民族大学科研基金(2018KJQD17); 广西民族大学研究生教育创新计划(gxun-chxps 202078)


Cloning and expression of keratinase gene from a marine-derived Pseudomonas aeruginosa Gxun-7 and enzymatic properties of the recombinant enzyme
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】角蛋白酶是一类特异性降解角蛋白的水解酶,在动物饲料、生物肥料、医学、洗涤、制革及环境治理等方面具有重要的应用潜力。【目的】对前期从海洋环境筛选出的一株铜绿假单胞菌Gxun-7的角蛋白酶基因进行克隆、表达,并探究重组酶酶学性质,为角蛋白酶在工业生产中的应用奠定基础。【方法】以铜绿假单胞菌Gxun-7基因组推定的角蛋白酶基因为基础,设计引物克隆获得角蛋白酶基因kp2,构建重组表达质粒pET22b-kp2,并转化到E. coliRosettagamiB (DE3)中进行诱导表达,同时对重组表达菌株的表达条件进行优化。利用镍柱分离纯化重组角蛋白酶并研究其酶学性质。【结果】重组角蛋白酶的分子量约为33 kDa,最适温度和pH值分别为40 ℃和8.0,在温度30-60 ℃和pH 6.5-8.0具有较好的稳定性。金属离子Co2+、Cu2+和化学试剂十二烷基磺酸钠(sodium dodecyl sulfonate,SDS)、乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)、苯甲基磺酰氟(phenylmethylsulfonyl fluoride,PMSF)对酶活力有抑制作用,而Mg2+、K+、巯基乙醇和二硫苏糖醇(dithiothreitol,DTT)对酶活力有促进作用。重组角蛋白酶具有良好的耐盐性,在12.5%的NaCl作用下相对酶活为87.55%。以酪蛋白为底物时,酶的Km值为60.92 mg/mL、Vmax值为9.70 U/mL。【结论】海洋来源铜绿假单胞菌Gxun-7的重组角蛋白酶具有良好的温度、碱、盐稳定性,可应用于工业生产中。

    Abstract:

    [Background] Keratinase is a kind of hydrolase that specifically degrades keratin, and has important application potential in animal feed, biological fertilizer, medicine, washing, tanning, and environmental treatment. [Objective] The keratinase gene of Pseudomonas aeruginosa Gxun-7 from marine environment was cloned and expressed, and the enzymatic properties of recombinant enzyme were investigated, which laid a foundation for the application of keratinase in industrial production. [Methods] Based on the putative keratinase gene of P. aeruginosa Gxun-7 genome, primers were designed to obtain keratinase gene kp2. The recombinant expression plasmid pET22b- kp2 was constructed, and transformed into E. coli RosettagamiB (DE3) for induced expression. Meanwhile, the expression conditions of the recombinant expression strain were optimized. The recombinant keratinase was isolated and purified by nickel column and its enzymatic properties were studied. [Results] The molecular weight of recombinant keratinase was about 33 kDa, and the optimal temperature was 40 ℃ at pH 8.0. The recombinant keratinase had good stability at temperature of 30-60 ℃ and pH 6.5-8.0. Metal ions including Co2+ and Cu2+, and chemical reagents including sodium dodecyl sulfonate (SDS), ethylenediaminetetraacetic acid (EDTA), and phenylmethylsulfonyl fluoride (PMSF) inhibited the enzyme activity, whereas Mg2+, K+, mercaptoethanol, and dithiothreitol (DTT) promoted the enzyme activity. The recombinant keratinase showed good salt tolerance, and the relative enzyme activity was 87.55% under the action of 12.5% NaCl. When casein was used as substrate, the K m and V max of the enzyme were 60.92 mg/mL and 9.70 U/mL. [Conclusion] The recombinant keratinase from the marine-derived P. aeruginosa Gxun-7 has good stability in temperature, alkali and salt, which can be applied to industrial production in the future.

    参考文献
    [1] Holkar CR, Jain SS, Jadhav AJ, Pinjari DV. Valorization of keratin based waste[J]. Process Safety and Environmental Protection, 2018, 115: 85-98
    [2] Huang Y, Liu X, Ran Y, Cao Q, Zhang A, Li D. Production of feather oligopeptides by a newly isolated bacterium Pseudomonas otitis H11[J]. Poultry Science, 2019
    [3] Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, Dhilon GS. Microbial keratinases: industrial enzymes with waste management potential[J]. Critical Reviews in Biotechnology, 2017, 37(4): 476-491
    [4] Mohorčič M, Torkar A, Friedrich J, Kristl J, Murdan S. An investigation into keratinolytic enzymes to enhance ungual drug delivery[J]. International Journal of Pharmaceutics, 2007, 332(1/2): 196-201
    [5] Reddy MR, Reddy KS, Chouhan YR, Bee H, Reddy G. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive[J]. Bioresource Technology, 2017, 243: 254-263
    [6] Akhter M, Wal Marzan L, Akter Y, Shimizu K. Microbial bioremediation of feather waste for keratinase production: an outstanding solution for leather dehairing in tanneries[J]. Microbiology Insights, 2020, 13: 1178636120913280
    [7] Schommer VA, Wenzel BM, Daroit DJ. Anaerobic co-digestion of swine manure and chicken feathers: effects of manure maturation and microbial pretreatment of feathers on methane production[J]. Renewable Energy, 2020, 152: 1284-1291
    [8] 侯晟琦, 王丽华, 赖欣, 陈惠, 吴琦, 韩学易. 角蛋白酶产生菌的分离鉴定及其kerC的克隆表达[J]. 中国环境科学, 2012, 32(10): 1845-1852 Hou SQ, Wang LH, Lai X, Chen H, Wu Q, Han XY. Isolation, identification of B-3Bacillus subtilis and cloning, expression of kerC[J]. China Environmental Science, 2012, 32(10): 1845-1852(in Chinese)
    [9] 傅岩, 张铁鹰, 孙英霞, 李松育. 通过定向进化技术提高角蛋白酶的热稳定性研究[J]. 动物营养学报, 2021, 33(10): 5887-5894 Fu Y, Zhang TY, Sun YX, Li SY. Enhancing thermostability of keratinase by directed evolution technology[J]. Chinese Journal of Animal Nutrition, 2021, 33(10): 5887-5894(in Chinese)
    [10] Korkmaz H, Hur H, Dincer S. Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste[J]. Annals of Microbiology, 2004, 54(2): 201-211
    [11] Arokiyaraj S, Varghese R, Ahmed BA, Duraipandiyan V, Al-Dhabi NA. Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment[J]. Saudi Journal of Biological Sciences, 2019, 26(2): 378-381
    [12] Bohacz J. Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss[J]. World Journal of Microbiology & Biotechnology, 2017, 33(1): 13
    [13] Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertlé T, Nedkov P. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis[J]. Letters in Applied Microbiology, 2005, 40(5): 335-340
    [14] 杨梦莹, 庞坤容, 潘江欣, 张红岩, 王一兵, 姜明国, 申乃坤. 一株可高效降解羽毛的铜绿假单胞菌的分离、鉴定、产酶条件优化及其酶活研究[J]. 微生物学报, 2022, 62(3): 968-981 Yang MY, Pang KR, Pan JX, Zhang HY, Wang YB, Jiang MG, Shen NK. Isolation, identification, optimization of enzyme-producing conditions and enzymatic activity of a feather-degradable Pseudomonas aeruginosa strain[J]. Acta Microbiologica Sinica, 2022, 62(3): 968-981(in Chinese)
    [15] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254
    [16] Sharma R, Gupta R. Extracellular expression of keratinase Ker P from Pseudomonas aeruginosa in E. coli[J]. Biotechnology Letters, 2010, 32(12): 1863-1868
    [17] Brandelli A, Daroit DJ, Riffel A. Biochemical features of microbial keratinases and their production and applications[J]. Applied Microbiology and Biotechnology, 2010, 85(6): 1735-1750
    [18] Abdel-Fattah AM, El-Gamal MS, Ismail SA, Emran MA, Hashem AM. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 311-318
    [19] Shapourzadeh A, Rahimi-Verki N, Atyabi SM, Shams-Ghahfarokhi M, Jahanshiri Z, Irani S, Razzaghi-Abyaneh M. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum[J]. Archives of Biochemistry and Biophysics, 2016, 608: 27-33
    [20] Nandini A, Madhusudhan DN, Dayanand A. Enhanced production, purification and characterization of alkaline keratinase from Streptomyces minutiscleroticus DNA38[J]. International Letters of Natural Sciences, 2015, 43: 27-37
    [21] Manivasagan P, Sivakumar K, Gnanam S, Venkatesan J, Kim SK. Production, biochemical characterization and detergents application of keratinase from the marine actinobacterium Actinoalloteichus sp. MA-32[J]. Journal of Surfactants and Detergents, 2014, 17(4): 669-682
    [22] Mwanza EP, Van Der Westhuizen WA, Boucher CE, Charimba G, Hugo C. Heterologous expression and characterisation of a keratinase produced by Chryseobacterium carnipullorum[J]. Protein Expression and Purification, 2021, 186: 105926
    [23] Hu H, Gao J, He J, Yu B, Zheng P, Huang ZQ, Mao XB, Yu J, Han GQ, Chen DW. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris[J]. PLoS One, 2013, 8(3): e58393
    [24] Lin X, Lee CG, Casale ES, Shih JC. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain[J]. Applied and Environmental Microbiology, 1992, 58(10): 3271-3275
    [25] Tork S, Aly MM, Nawar L. Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21[J]. Asian Journal of Biotechnology, 2009, 2(1): 1-13
    [26] Cai CG, Chen JS, Qi JJ, Yin Y, Zheng XD. Purification and characterization of keratinase from a new Bacillus subtilis strain[J]. Journal of Zhejiang University Science B, 2008, 9(9): 713-720
    [27] 刘柏宏. Bacillus licheniformis角蛋白酶的高效表达、热稳定性及底物特异性改造[D]. 无锡: 江南大学博士学位论文, 2015 Liu BH. Over expression of Bacillus licheniformis keratinase, its molecular modification for enhanced thermostability and substrate specificity[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2015(in Chinese)
    [28] Sharma R, Murty NAR, Gupta R. Molecular characterization of N-terminal pro-sequence of keratinase Ker P from Pseudomonas aeruginosa: identification of region with chaperone activity[J]. Applied Biochemistry and Biotechnology, 2011, 165(3/4): 892-901
    [29] Rajput R, Tiwary E, Sharma R, Gupta R. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability[J]. Enzyme and Microbial Technology, 2012, 51(3): 131-138
    [30] Fang Z, Sha C, Peng Z, Zhang J, Du GC. Protein engineering to enhance keratinolytic protease activity and excretion in Escherichia coli and its scale-up fermentation for high extracellular yield[J]. Enzyme and Microbial Technology, 2019, 121: 37-44
    [31] Fang XJ, Tang ZX, Li ZH, Zhang ZL, Shi L. Production of a new non-specific nuclease from Yersinia enterocolitica subsp.palearctica: optimization of induction conditions using response surface methodology[J]. Biotechnology, Biotechnological Equipment, 2014, 28(3): 559-566
    [32] 张志强, 刘鑫潮, 牛金中, 黄瑜, 王蓓, 简纪常. 尼罗罗非鱼Galectin-4基因的原核表达及诱导条件优化[J]. 广东海洋大学学报, 2020, 40(5): 118-123 Zhang ZQ, Liu XC, Niu JZ, Huang Y, Wang B, Jian JC. Prokaryotic expression and optimization of Galectin-4 gene from Nile tilapia (Oreochromis niloticus)[J]. Journal of Guangdong Ocean University, 2020, 40(5): 118-123(in Chinese)
    [33] Gurunathan R, Huang B, Ponnusamy VK, Hwang JS, Dahms HU. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs[J]. Scientific Reports, 2021, 11: 12007
    [34] Cao ZJ, Zhang Q, Wei DK, Chen L, Wang J, Zhang XQ, Zhou MH. Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(2): 181-188
    [35] 徐志龙, 尹雅洁, 夏险, 梁运祥, 赵述淼, 胡远亮. 角蛋白酶生产菌株的筛选鉴定及酶学性质研究[J]. 安徽农业大学学报, 2021, 48(4): 620-624 Xu ZL, Yin YJ, Xia X, Liang YX, Zhao SM, Hu YL. Screening, identifing and enzymatic characterizations of a keratinase-producing strain[J]. Journal of Anhui Agricultural University, 2021, 48(4): 620-624(in Chinese)
    [36] Gupta R, Ramnani P. Microbial keratinases and their prospective applications: an overview[J]. Applied Microbiology and Biotechnology, 2006, 70(1): 21-33
    [37] Parinayawanich S, Sittipol D, Ajingi YS, Rodpan S, Pattanapanyasat K, Jongruja N. Application of recombinant hyperthermostable keratinase for degradation of chicken feather waste[J]. Biocatalysis and Agricultural Biotechnology, 2021, 36: 102146
    [38] Han MH. Isolation and characterization of a keratinolytic protease from a feather-degrading bacterium Pseudomonas aeruginosa C11[J]. African Journal of Microbiology Research, 2012, 6(9): 2211-2221
    [39] Zhang RX, Gong JS, Su C, Zhang DD, Tian H, Dou WF, Li H, Shi JS, Xu ZH. Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798[J]. International Journal of Biological Macromolecules, 2016, 93: 843-851
    [40] Tatineni R, Doddapaneni KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N, Mangamoori LN. Purification and characterization of an alkaline keratinase from Streptomyces sp.[J]. Bioresource Technology, 2008, 99(6): 1596-1602
    [41] 钟泓波, 郇惠杰, 雷芬芬, 赵强忠, 赵谋明, 崔春. 产蛋白酶深海细菌的筛选及其蛋白酶酶学性质[J]. 食品与发酵工业, 2013, 39(8): 108-112 Zhong HB, Huan HJ, Lei FF, Zhao QZ, Zhao MM, Cui C. Isolation of producing-proteases marine bacteria and characterization of the proteases in fermented liquid[J]. Food and Fermentation Industries, 2013, 39(8): 108-112(in Chinese)
    [42] Shen NK, Yang MY, Xie CJ, Pan JX, Pang KR, Zhang HY, Wang YB, Jiang MG. Isolation and identification of a feather degrading Bacillus tropicus strain Gxun-17 from marine environment and its enzyme characteristics[J]. BMC Biotechnology, 2022, 22(1): 11
    [43] 许佳惠, 尹雅洁, 李欣悦, 柳凯, 梁运祥, 赵述淼, 胡远亮. 产角蛋白酶毕赤酵母工程菌的构建及酶学性质[J]. 华中农业大学学报, 2019, 38(3): 71-76 Xu JH, Yin YJ, Li XY, Liu K, Liang YX, Zhao SM, Hu YL. Construction and characterization of recombinant Pichia pastoris strain with keratinase production[J]. Journal of Huazhong Agricultural University, 2019, 38(3): 71-76(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨梦莹,谢晨杰,李时勇,张红岩,王一兵,申乃坤,姜明国. 一株海洋来源铜绿假单胞菌Gxun-7角蛋白酶基因的克隆、表达及重组酶酶学性质[J]. 微生物学通报, 2022, 49(11): 4629-4643

复制
分享
文章指标
  • 点击次数:316
  • 下载次数: 859
  • HTML阅读次数: 826
  • 引用次数: 0
历史
  • 收稿日期:2022-03-17
  • 最后修改日期:2022-05-06
  • 录用日期:2022-05-06
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码