科微学术

微生物学通报

长潭水库铁锰含量与环境因子的季节性变化相关性分析及铁锰氧化菌群的富集培养
作者:
基金项目:

台州市黄岩区科技计划(2021036)


Correlation between concentration of iron/manganese ion and environmental factors, and enrichment of iron-and manganese-oxidizing bacteria in Changtan Reservoir during different seasons
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】目前对水库水体污染原因的研究往往专注于水体的富营养化、pH值、溶解氧、氨氮、菌落总数指标的变化,而重金属含量与环境因子的季节性变化相关性分析研究较少,同时对于典型季节原位微生物种群的多样性差异研究尚未见报道。【目的】研究浙江省台州市长潭水库底部水中正二价金属离子(二价锰离子Mn2+;二价铁离子Fe2+)浓度与不同环境因子的季节性变化规律,并对其相关性进行分析;富集平水期(2月)和丰水期(8月)水库底部水体中功能微生物菌群,分析其种类和丰度的差异。【方法】分别检测12个月的水库水Mn2+和Fe2+浓度及多种环境因子(水体溶解氧浓度、pH值、总磷浓度、浊度、水库环境温度及降水量),过滤并富集培养水库底部水体的功能微生物菌群,对其16S rRNA基因V3-V4区测序并分析其菌群结构。【结果】长潭水库水中Mn2+和Fe2+浓度呈季节性变化,每年的春夏交替季节水体中铁锰含量从零开始慢慢升高,至夏秋高温季节水体中Mn2+和Fe2+浓度达到最高值,然后慢慢降低,至秋末冬初检测不到含量。在检测的多种环境因子中,水体溶解氧浓度、水库环境温度及降水量呈明显的季节性规律变化。Mn2+和Fe2+浓度与温度、降水量和浊度有正相关性,与溶解氧浓度、pH值和总磷浓度有负相关性,其中在正负相关性分析中两种金属离子的浓度与溶解氧浓度的相关性最强,其次是环境温度及降水量。丰水期和平水期中富集获得的功能微生物菌群的种类和丰度差异很大,从属水平上分类,丰水期时菌群只包含不动杆菌(Acinetobacter)和鲑色沉积物杆状菌(Sediminibacterium)这2个属的菌株,含量各占约50%;平水期时菌群则主要由杆菌属(Bacillariophyta) (47.62%)和Limnohabitans(9.52%)等9个属的菌株构成。富集获得的平水期和丰水期的两个可培养的菌群均具有去除水库水中Mn2+的功能,去除率分别约为35.9%和11.4%。【结论】长潭水库底部水体中Mn2+和Fe2+浓度与不同环境因子均呈季节性规律变化,它们之间呈现不同的正负相关性,丰水期和平水期的功能微生物菌群结构差异很大。本研究为利用微生物进行重金属污染水体的治理储备了微生物资源,为实现国家“美丽乡村”的建设目标提供一定的参考价值。

    Abstract:

    [Background] Research on the causes of the pollution in reservoir water often focuses on water eutrophication, and the changes of pH value, dissolved oxygen, ammonia nitrogen, and total bacterial count. However, a few studies on the seasonal variation pattern of heavy metal content and environmental factors and the correlation between the heavy metal content and different environmental factors are available. In addition, there is no report on the diversity of in-situ microbial populations in typical seasons. [Objective] To detect the seasonal variation of the concentration of Mn2+ and Fe2+ and different environmental factors in the bottom water of Changtan reservoir, Taizhou city, Zhejiang province, analyze their correlation, enrich functional microbial consortia at the bottom of the reservoir in normal (February) and wet (August) periods, and elucidate the difference in the species and diversity of the enriched microbial communities. [Methods] The bottom water of the reservoir was filtrated and the functional microbial consortia was enriched. The V3–V4 regions of 16S rRNA genes were sequenced and the community structure was analyzed. All tests were carried out according to the Standard Examination Methods for Drinking Water (GB5750-2006). [Results] The concentration of Mn2+ and Fe2+ in the water of Changtan reservoir changed seasonally. The concentration of Mn2+ and Fe2+ (initial 0 mg/L) in the water began to slowly increase in the spring-summer succession period every year, peaked in summer and autumn, and then decreased to below the detection limit in the late autumn and early winter. Among the detected environmental factors, the concentration of dissolved oxygen in water, ambient temperature of reservoir, and precipitation showed obvious seasonal changes. The concentration of Mn2+ and Fe2+ had a positive correlation with temperature, precipitation, and turbidity but a negative correlation with dissolved oxygen concentration, pH value, and total phosphorus concentration. In the correlation analysis, the concentration of two metal ions had the strongest correlation with dissolved oxygen concentration, followed by ambient temperature and precipitation. The species and diversity of functional microbes were significantly different between the normal and wet periods. Only Acinetobacter and Sediminibacterium were detected in the wet period, accounting for about 50% each, while the normal period was dominated by 9 genera, such as Bacillariophyta (47.62%) and Limnohabitans (9.52%). The culturable consortia from water in the normal period and wet period both can remove the Mn2+ in the reservoir water, and the removal rates were about 35.9% and 11.4%, separately. [Conclusion] The concentration of Mn2+ and Fe2+ in the bottom of Changtan reservoir changes seasonally with different environmental factors, and the concentration of Mn2+ and Fe2+ shows different correlation with different environmental factors. The structures of the two functional microbial communities enriched in wet and normal periods are different. This study provides microbial resources for the treatment of heavy metal-polluted water by microorganisms, and has a certain reference value for realizing the goal of “beautiful countryside” in China.

    参考文献
    [1] Bin Jusoh A, Cheng WH, Low WM, Nora'aini A, Megat Mohd Noor MJ. Study on the removal of iron and manganese in groundwater by granular activated carbon[J]. Desalination, 2005, 182(1/2/3): 347-353
    [2] Leach RM, Harris ED. Manganese: Handbook of nutritionally essential minerals[M]. Marcel Dekker, New York, 1997
    [3] 鲁安怀, 卢晓英, 任子平, 韩丽荣, 方勤方, 韩勇. 天然铁锰氧化物及氢氧化物环境矿物学研究[J]. 地学前缘, 2000, 7(2): 473-483 Lu AH, Lu XY, Ren ZP, Han LR, Fang QF, Han Y. New advances in environmental mineralogy of natural oxides and hydroxides of iron and manganese[J]. Earth Science Frontiers, 2000, 7(2): 473-483(in Chinese)
    [4] 孙家富. 我国富锰矿资源现状及其成矿条件分析[J]. 中国锰业, 1995, 13(6): 7-11 Sun JF. Present status of China's high-grade manganese ore resources and analysis of their fokmation[J]. China's Manganese Industry, 1995, 13(6): 7-11(in Chinese)
    [5] Sharma SK, Kappelhof J, Groenendijk M, Schippers JC, Schippers JC. Comparison of physicochemical iron removal mechanisms in filters[J]. Journal of Water Supply: Research and Technology-Aqua, 2001, 50(4): 187-198
    [6] Mazuelos A, Palencia I, Romero R, Rodríguez G, Carranza F. Ferric iron production in packed bed bioreactors: influence of pH, temperature, particle size, bacterial support material and type of air distributor[J]. Minerals Engineering, 2001, 14(5): 507-514
    [7] Mazuelos A, Romero R, Palencia I, Carranza F, Borjas FJ. Oxygen transfer in ferric iron biological production in a packed-bed reactor[J]. Hydrometallurgy, 2002, 65(1): 15-22
    [8] Vigneswaran S, Visvanathan C. Water treatment processes: Simple options[M]. CRC Press, New York, 1995
    [9] Robinson RB. State-of-the-art iron and manganese control[J]. Journal of the New England Water Works Association, 2000, 114(3): 176-186
    [10] Nordell E. Water Treatment[M]. 2nd ed. Reinhold, New York, 1961
    [11] van Halem D, Olivero S, de Vet WWJM, Verberk JQJC, Amy GL, van Dijk JC. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh[J]. Water Research, 2010, 44(19): 5761-5769
    [12] 李惠珍, 许旭萍, 林跃鑫, 谢华玲. 铁-锰氧化鞘细菌的生境条件及分离鉴定[J]. 水生生物学报, 1999, 23(4): 311-315 Li HZ, Xu XP, Lin YX, Xie HL. Isolation identification and habitat conditions of Fe-Mn oxidized sheathed bacteria[J]. Acta Hydrobiologica Sinica, 1999, 23(4): 311-315(in Chinese)
    [13] 赵焱, 李冬, 李相昆, 吴小莉, 张杰. 高效生物除铁除锰工程菌MSB-4的特性研究[J]. 中国给水排水, 2009, 25(1): 40-44 Zhao Y, Li D, Li XK, Wu XL, Zhang J. A highly effective engineering strain MSB-4 for biological removal of iron and manganese[J]. China Water & Wastewater, 2009, 25(1): 40-44(in Chinese)
    [14] 李冬, 张杰, 王洪涛, 张艳萍. 除铁除锰生物滤层内铁的氧化去除机制探讨[J]. 哈尔滨工业大学学报, 2007, 39(8): 1323-1326 Li D, Zhang J, Wang HT, Zhang YP. Study on the mechanism of Fe2+ oxidation and removal in the biological filter for iron and manganese removal[J]. Journal of Harbin Institute of Technology, 2007, 39(8): 1323-1326(in Chinese)
    [15] 陈建军, 翁国永. 除锰菌筛选及其生物活性[J]. 净水技术, 2017, 36(12): 79-83 Chen JJ, Weng GY. Screening of manganese removal microorganism and the performance of biological activity[J]. Water Purification Technology, 2017, 36(12): 79-83(in Chinese)
    [16] 中华人民共和国国家标准, 生活饮用水标准检验方法GB 5750—2006[S]. 北京: 中国标准出版社, 2006 National Standard of the People's Republic of China. Standard Examination Methods for Drinking Water GB 5750—2006[S]. Beijing: Standards Press of China, 2006(in Chinese)
    [17] 潘鸿, 唐宇宏. 长潭水库浮游植物群落结构及其富营养化评价[J]. 湖南生态科学学报, 2021, 8(2): 60-65 Pan H, Tang YH. Phytoplankton community structure and eutrophication evaluation of changtan reservoir[J]. Journal of Hunan Ecological Science, 2021, 8(2): 60-65(in Chinese)
    [18] 刘灿生, 黄毅轩, 陈牧民. 关于地下水除铁、除锰机理的讨论[J]. 给水排水, 1996, 22(10): 17-20 Liu CS, Huang YX, Chen MM. Discussion on the mechanism of iron and manganese removal from groundwater[J]. Water & Wastewater Engineering, 1996, 22(10): 17-20(in Chinese)
    [19] 张吉库, 傅金祥, 周华斌, 赵玉华, 陶飞. 地下水除铁除锰技术与发展趋势[J]. 沈阳建筑工程学院学报(自然科学版), 2003, 19(3): 212-214 Zhang JK, Fu JX, Zhou HB, Zhao YH, Tao F. Technology about Fe and Mn removals of underground water and development[J]. Journal of Shenyang Jianzhu University: Natural Science, 2003, 19(3): 212-214(in Chinese)
    [20] 罗肖丽. 地表水中藻类代谢对溶解氧含量及pH值的影响[J]. 广东化工, 2021, 48(21): 138-139 Luo XL. The influence of algae metabolism on dissolved oxygen and pH in surface water[J]. Guangdong Chemical Industry, 2021, 48(21): 138-139(in Chinese)
    [21] 王翠, 姜鑫, 刘佳. 尔王庄水库总磷、总氮、溶解氧与藻类计数相关性的研究[J]. 天津科技, 2016, 43(8): 35-37, 40 Wang C, Jiang X, Liu J. Correlation of total phosphorus, total nitrogen, dissolved oxygen with algae counts in Erwangzhuang reservoir[J]. Tianjin Science & Technology, 2016, 43(8): 35-37, 40(in Chinese)
    [22] 李冬, 张杰, 陈立学, 杨宏, 高孟臣. 生物除铁除锰在地下水处理厂的应用[J]. 中国给水排水, 2004, 20(12): 85-88 Li D, Zhang J, Chen LX, Yang H, Gao MC. Application of biological removal of iron and manganese from groundwater treatment plant[J]. China Water & Wastewater, 2004, 20(12): 85-88(in Chinese)
    [23] Tekerlekopoulou AG, Vayenas DV. Ammonia, iron and manganese removal from potable water using trickling filters[J]. Desalination, 2007, 210(1/2/3): 225-235
    [24] Vayenas DV, Lyberatos G. A novel model for nitrifying trickling filters[J]. Water Research, 1994, 28(6): 1275-1284
    [25] 杨沈生, 杨沈丽, 刘华. 周口市水体氮污染状况及防治对策[J]. 河南水利与南水北调, 2008(8): 28-29 Yang SS, Yang SL, Liu H. Nitrogen pollution status and control countermeasures of water body in Zhoukou city[J]. Henan Water Resources & South-to-North Water Diversion, 2008(8): 28-29(in Chinese)
    [26] 张翀, 赵亮, 张莹, 赵庆良. 藻类爆发危害及其控制技术研究进展[J]. 环境保护科学, 2015, 41(3): 107-112 Zhang C, Zhao L, Zhang Y, Zhao QL. Research progress of the hazard and control technology of algae bloom[J]. Environmental Protection Science, 2015, 41(3): 107-112(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翁国永,应之悦,李正明,许楹. 长潭水库铁锰含量与环境因子的季节性变化相关性分析及铁锰氧化菌群的富集培养[J]. 微生物学通报, 2022, 49(11): 4503-4512

复制
分享
文章指标
  • 点击次数:479
  • 下载次数: 1051
  • HTML阅读次数: 1063
  • 引用次数: 0
历史
  • 收稿日期:2022-05-04
  • 最后修改日期:2022-05-23
  • 录用日期:2022-05-23
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码