科微学术

微生物学通报

模拟水流扰动对香溪河库湾浮游病毒-宿主动态的影响
作者:
基金项目:

国家自然科学基金(51579092, 31370148)


Effect of stimulated water flow disturbance on the virioplankton-host dynamics in Xiangxi Bay
Author:
  • CAI Yufei

    CAI Yufei

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Siting

    CHENG Siting

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Yijun

    ZHAO Yijun

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Kai

    CHENG Kai

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIAO Yiying

    JIAO Yiying

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIAO Mingjun

    LIAO Mingjun

    School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】浮游病毒是淡水生态系统的重要组成部分,在调节浮游细菌和藻类群落结构及调控系统物质循环过程中起着重要的作用。水库具有不同于湖泊的水动力过程,产生的扰动可能影响浮游病毒的调控功能。【目的】研究水力扰动对浮游病毒-宿主动态的影响,为阐释水库生境下浮游病毒生态功能提供理论依据。【方法】以香溪河库湾原水为材料,模拟不同流速扰动对病毒-宿主动态的影响;通过病毒丰度、宿主丰度、宿主裂解率、宿主溶源诱导率等参数的变化反映这种动态变化过程,并分析其与环境因子间的关系。【结果】0.05 m/s和0.10 m/s的流速扰动强度对浮游植物和浮游细菌生长有显著促进作用,但扰动对浮游病毒丰度的影响不显著;扰动能促进病毒介导的浮游植物和细菌裂解率上升,而且0.05 m/s扰动强度的促进作用大于0.10 m/s;同时,扰动显著降低了浮游植物溶源诱导率,但引起浮游细菌溶源诱导率的显著上升(P<0.05)。【结论】模拟扰动对浮游病毒-宿主动态过程产生了显著的影响,表明水库浮游病毒维持种群延续的生态策略可能与湖泊浮游病毒存在差异。

    Abstract:

    [Background] As an essential part of freshwater ecosystem, virioplankton plays a key role in shaping the planktonic community structure and regulating the biogeochamical cycle of nutrients in water. The hydrodynamic process of reservoir is different from that of lake, and the disturbance may affect the virioplankton-host dynamics. [Objective] To reveal the effect of hydraulic disturbance on virioplankton-host dynamics and thus to lay a scientific basis for explaining the ecological function of virioplankton in reservoir. [Methods] The water sample from Xiangxi Bay was used and different flows were simulated. The parameters such as virioplankton abundance, host abundance, host lysis rate, and percentage of lysogenic host were monitored, and the relationship of the parameters with environmental factors was analyzed. [Results] The flow at 0.05 m/s and 0.10 m/s significantly promoted the growth of phytoplankton and bacteriaplankton but had no significant influence on the abundance of virioplankton. Disturbance enhanced the virus-mediated lysis of phytoplankton and bacteriaplankton, particularly the flow at 0.05 m/s. Meanwhile, the disturbance significantly reduced the phytoplankton lysogenic induction rate but caused the significant increase in the bacteriaplankton lysogenic induction rate (P <0.05). [Conclusion] The simulated disturbance had significant impact on the virioplankton-host dynamics, indicating that the survival strategy of reservoir virioplankton may be different from that of lake virioplankton.

    参考文献
    [1] Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews: MMBR, 2000, 64(1): 69-114
    [2] Weinbauer MG. Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181
    [3] Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea viruses play critical roles in the structure and function of aquatic food webs[J]. BioScience, 1999, 49: 781-788
    [4] Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems[J]. Nature Reviews Microbiology, 2020, 18(1): 21-34
    [5] Zheng Q, Lin WX, Wang Y, Xu DP, Liu YT, Jiao NZ. Top-down controls on nutrient cycling and population dynamics in a model estuarine photoautotroph-heterotroph co-culture system[J]. Molecular Ecology, 2021, 30(2): 592-607
    [6] Sime-Ngando T, Gosselin M, Juniper SK, Levasseur M. Changes in sea-ice phagotrophic microprotists (20-200μm) during the spring algal bloom, Canadian Arctic Archipelago[J]. Journal of Marine Systems, 1997, 11(1-2): 163-172
    [7] Zhang R, Li YX, Yan W, Wang Y, Cai LL, Luo TW, Li HF, Weinbauer MG, Jiao NZ. Viral control of biomass and diversity of bacterioplankton in the deep sea[J]. Communications Biology, 2020, 3: 256
    [8] Suttle CA. Marine viruses-major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812
    [9] Säwström C, Pollard P. Environmental influences on virus-host interactions in an Australian subtropical reservoir[J]. Environmental Microbiology Reports, 2012, 4(1): 72-81
    [10] Cabral AS, Lessa MM, Mello MP, Martins RM, Pulgati FH, Paranhos R. Occurrence and role of virioplankton in a tropical estuarine system[J]. Hydrobiologia, 2020, 847(19): 4125-4140
    [11] Barros N, Farjalla VF, Soares MC, Melo RCN, Roland F. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake[J]. Applied and Environmental Microbiology, 2010, 76(21): 7194-7201
    [12] Chen XW, Wei W, Wang JN, Li HB, Sun J, Ma RJ, Jiao NZ, Zhang R. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem[J]. Water Research, 2019, 160: 118-129
    [13] 彭开达. 三峡库区香溪河浮游病毒时空分布及其感染特性研究[D]. 武汉: 湖北工业大学硕士学位论文, 2018 Peng KD. The spatial-temporal distribution and infection characteristics of virioplankton in Xiangxi Bay of the Three Gorges reservoir[D]. Wuhan: Master’s Thesis of Hubei University of Technology, 2018(in Chinese)
    [14] 张远, 郑丙辉, 刘鸿亮. 三峡水库蓄水后的浮游植物特征变化及影响因素[J]. 长江流域资源与环境, 2006, 15(2): 254-258 Zhang Y, Zheng BH, Liu HL. Characteristics of phytoplankton composition with analysis of its impact factors after impounding of the Three Gorges reservoir[J]. Resources and Environment in the Yangtze Basin, 2006, 15(2): 254-258(in Chinese)
    [15] Maclsaac EA, Stockner JG. Enumeration of phototrophic picoplankton by autofluorescence microscopy[A]// Handbook of Methods in Aquatic Microbial Ecology[M]. Florida: CRC Press, 2018: 187-197
    [16] Marie D, Brussaard C, Partensky F, Vaulot D, Wiley J. Flow cytometric analysis of phytoplankton, bacteria and viruses[J]. Current protocols in cytometry, 1999,11: 1-11.
    [17] 杨敏, 毕永红, 艾鹰, 胡建林, 朱孔贤, 胡征宇. 人工控制条件下水流速对香溪河库湾浮游植物影响的初步研究[J]. 长江流域资源与环境, 2012, 21(2): 220-224 Yang M, Bi YH, Ai Y, Hu JL, Zhu KX, Hu ZY. A preliminary study on effect of artificial controlled flow velocity on phytoplankton in Xiangxi Bay[J]. Resources and Environment in the Yangtze Basin, 2012, 21(2): 220-224(in Chinese)
    [18] 何爱政, 刘德富, 杨正健, 阮腾腾, 朱晓明. 不同扰动强度对浮游藻类群落结构演替的影响[J]. 环境科学与技术, 2015, 38(5): 53-58, 77 He AZ, Liu DF, Yang ZJ, Ruan TT, Zhu XM. Effect of different disturbance strength on succession of phytoplankton community[J]. Environmental Science & Technology, 2015, 38(5): 53-58, 77(in Chinese)
    [19] 焦世珺. 三峡库区低流速河段流速对藻类生长的影响[D]. 重庆: 西南大学硕士学位论文, 2007 Jiao SJ. The effects of velocity of glow to the growth of algae in low current area of the Three Gorges[D]. Chongqing: Master’s Thesis of Southwest University, 2007(in Chinese)
    [20] Yang ZJ, Wei CY, Liu DF, Lin QC, Huang YL, Wang CF, Ji DB, Ma J, Yang H. The influence of hydraulic characteristics on algal bloom in Three Gorges reservoir, China: A combination of cultural experiments and field monitoring[J]. Water Research, 2022, 211: 118030
    [21] 吴晓辉, 李其军. 水动力条件对藻类影响的研究进展[J]. 生态环境学报, 2010, 19(7): 1732-1738 Wu XH, Li QJ. Reviews of influences from hydrodynamic conditions on algae[J]. Ecology and Environmental Sciences, 2010, 19(7): 1732-1738(in Chinese)
    [22] Fraisse S, Bormans M, Lagadeuc Y. Turbulence effects on phytoplankton morphofunctional traits selection[J]. Limnology and Oceanography, 2015, 60(3): 872-884
    [23] Mitrovic SM, Oliver RL, Rees C, Bowling LC, Buckney RT. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers[J]. Freshwater Biology, 2003, 48(1): 164-174
    [24] Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B. Changes in turbulent mixing shift competition for light between phytoplankton species[J]. Ecology, 2004, 85(11): 2960-2970
    [25] Sullivan JM, Swift E. Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates1[J]. Journal of Phycology, 2003, 39(1): 83-94
    [26] Weithoff G, Lorke A, Walz N. Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake[J]. Oecologia, 2000, 125(1): 91-100
    [27] 赵海萍. 渤海湾浮游细菌及水层生态水动力学模拟[D]. 天津: 天津大学硕士学位论文, 2006 Zhao HP. Bacterioplankton & ecohydrodynamic modeling of water layer in Bohai Bay[D]. Tianjin: Master’s Thesis of Tianjin University, 2006(in Chinese)
    [28] 胡鹏, 杨庆, 杨泽凡, 韩昆, 潘剑光. 水体中溶解氧含量与其物理影响因素的实验研究[J]. 水利学报, 2019, 50(6): 679-686 Hu P, Yang Q, Yang ZF, Han K, Pan JG. Experimental study on dissolved oxygen content in water and its physical influence factors[J]. Journal of Hydraulic Engineering, 2019, 50(6): 679-686(in Chinese)
    [29] Amanullah A, Tuttiett B, Nienow AW. Agitator speed and dissolved oxygen effects in Xanthan fermentations[J]. Biotechnology and Bioengineering, 1998, 57(2): 198-210
    [30] 李飞鹏, 高雅, 张海平, 肖宜华, 陈玲. 流速对浮游藻类生长和种群变化影响的模拟试验[J]. 湖泊科学, 2015, 27(1): 44-49 Li FP, Gao Y, Zhang HP, Xiao YH, Chen L. Simulation experiment on the effect of flow velocity on phytoplankton growth and composition[J]. Journal of Lake Sciences, 2015, 27(1): 44-49(in Chinese)
    [31] Brussaard CPD. Viral control of phytoplankton populations—a review1[J]. Journal of Eukaryotic Microbiology, 2004, 51(2): 125-138
    [32] 潘雯雯, 杨桂军, 芮政, 钟春妮, 秦伯强, 杨宏伟. 野外模拟扰动方式对太湖浮游植物群落结构的影响[J]. 环境科学研究, 2020, 33(6): 1421-1430 Pan WW, Yang GJ, Rui Z, Zhong CN, Qin BQ, Yang HW. Effects of in situ simulative mixing modes on phytoplankton community structure in lake Taihu[J]. Research of Environmental Sciences, 2020, 33(6): 1421-1430(in Chinese)
    [33] 陈保国, 李登峰, 严小军. 硅藻病毒研究进展[J]. 海洋科学, 2015, 39(9): 123-130 Chen BG, Li DF, Yan XJ. Review of diatom viruses[J]. Marine Sciences, 2015, 39(9): 123-130(in Chinese)
    [34] Wei W, Chen XW, Weinbauer MG, Jiao NZ, Zhang R. Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean[J]. The ISME Journal, 2022, 16(6): 1668-1675
    [35] Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems[J]. Biological Reviews, 2017, 92(2): 1081-1100
    [36] 黄保国, 顾越, 陈国炜, 金菊良, 刘丽. 给水管网流速对水质和生物膜种群结构的影响[J]. 应用与环境生物学报, 2018, 24(4): 860-865 Huang BG, Gu Y, Chen GW, Jin JL, Liu L. Effects of water velocity on bulk water quality and biofilm population structure in drinking water distribution systems[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 860-865(in Chinese)
    [37] Stoddard LI, Martiny JBH, Marston MF. Selection and characterization of cyanophage resistance in marine Synechococcus strains[J]. Applied and Environmental Microbiology, 2007, 73(17): 5516-5522
    [38] Hudnell HK, Jones C, Labisi B, Lucero V, Hill DR, Eilers J. Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC)[J]. Harmful Algae, 2010, 9(2): 208-217
    [39] Payet JP, Suttle CA. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status[J]. Limnology and Oceanography, 2013, 58(2): 465-474
    [40] Jassim SAA, Limoges RG. Impact of external forces on cyanophage-host interactions in aquatic ecosystems[J]. World Journal of Microbiology & Biotechnology, 2013, 29(10): 1751-1762
    [41] Ofir G, Sorek R. Contemporary phage biology: from classic models to new insights[J]. Cell, 2018, 172(6): 1260-1270
    [42] Maranger R, Bird DR, Juniper SK. Viral and bacterial dynamics in Arctic Sea ice during the spring algal bloom near Resolute, N.W.T., Canada[J]. Marine Ecology Progress Series, 1994, 111: 121-127
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡雨菲,程斯婷,赵以军,程凯,焦一滢,廖明军. 模拟水流扰动对香溪河库湾浮游病毒-宿主动态的影响[J]. 微生物学通报, 2022, 49(11): 4491-4502

复制
分享
文章指标
  • 点击次数:440
  • 下载次数: 1043
  • HTML阅读次数: 1022
  • 引用次数: 0
历史
  • 收稿日期:2022-02-19
  • 最后修改日期:2022-06-04
  • 录用日期:2022-06-04
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码