科微学术

微生物学通报

环境因子对厌氧微生物脱卤的影响研究进展
作者:
基金项目:

国家重点研发计划(2019YFC1804400);国家自然科学基金(42177220,41907287,41977295,41907220);中国科学院前沿科学重点研究计划(ZDBS-LY-DQC038)


Effects of environmental factors on anaerobic microbial dehalogenation: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [176]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    有机卤代物在工农业生产中的广泛应用及不合理处置与排放导致其成为地下环境中普遍存在的一类污染物,严重威胁地下生态系统功能、饮用水安全和人类健康。有机卤呼吸细菌在有机卤污染场地的原位生物修复中起到了至关重要的作用。本文简要概述了影响和制约有机卤呼吸微生物生长代谢及脱卤活性的一些关键环境因子,如pH、温度、盐度、电子供受体和氧气等,并且对有机卤呼吸细菌未来的研究方向提出展望,以期为污染场地原位生物修复工程的有效实施提供理论与技术参考。

    Abstract:

    Wide applications and improper treatments of organohalides in industry and agriculture lead to their ubiquitous presence in the underground environments, posing a great threat to ecosystem functions, drinking water safety and human health. Organohalide-respiring bacteria (OHRB) are crucial forin situ bioremediation of organohalide-contaminated environments. This review summarizes environmental factors (e.g., pH, temperature, salinity, electron donors and acceptors, oxygen) that may impact the growth, metabolisms and dechlorination activities of OHRB, and discusses the future research of OHRB, which is intended to provide theoretical and technical reference for the effective implementation of in situ bioremediation to clean up organohalides-contaminated sites.

    参考文献
    [1] Stuart M, Lapworth D, Crane E, Hart A. Review of risk from potential emerging contaminants in UK groundwater[J]. Science of the Total Environment, 2012, 416:1-21
    [2] Duan XY, Li YX, Li XG, Li MF, Zhang DH. Distributions and sources of polychlorinated biphenyls in the coastal East China Sea sediments[J]. Science of the Total Environment, 2013, 463-464:894-903
    [3] Qu RJ, Liu JQ, Li CG, Wang LS, Wang ZY, Wu JC. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids[J]. Water Research, 2016, 104:34-43
    [4] Goldman SM, Quinlan PJ, Ross GW, Marras C, Meng C, Bhudhikanok GS, Comyns K, Korell M, Chade AR, Kasten M, et al. Solvent exposures and parkinson disease risk in twins[J]. Annals of Neurology, 2012, 71(6):776-784
    [5] Qiu YL, Strid A, Bignert A, Zhu ZL, Zhao JF, Athanasiadou M, Athanassiadis I, Bergman Å. Chlorinated and brominated organic contaminants in fish from Shanghai markets:a case study of human exposure[J]. Chemosphere, 2012, 89(4):458-466
    [6] Henry BM. Biostimulation for Anaerobic Bioremediation of Chlorinated Solvents[A]//Stroo HF, WARD CH. In situ Remediation of Chlorinated Solvent Plumes[M]. New York, NY; Springer New York. 2010:357-423.
    [7] Suflita JM, Horowitz A, Shelton DR, Tiedje JM. Dehalogenation:a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577):1115-1117
    [8] Akimova GP, Sokolova MG. Low temperature impact on protein content and peroxidase activity during pea inoculation with Rhizobium leguminosarum[J]. Journal of Stress Physiology & Biochemistry, 2010, 6(4):81-89
    [9] Haest PJ, Springael D, Seuntjens P, Smolders E. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL[J]. Chemosphere, 2012, 89(11):1369-1375
    [10] Wen LL, Chen JX, Fang JY, Li A, Zhao HP. Effects of 1, 1,1-trichloroethane and triclocarban on reductive dechlorination of trichloroethene in a TCE-reducing culture[J]. Frontiers in Microbiology, 2017, 8:1439
    [11] Gao JW, Skeen RS, Hooker BS, Quesenberry RD. Effects of several electron donors on tetrachloroethylene dechlorination in anaerobic soil microcosms[J]. Water Research, 1997, 31(10):2479-2486
    [12] Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Löffler FE. Oxygen effect on Dehalococcoides viability and biomarker quantification[J]. Environmental Science & Technology, 2008, 42(15):5718-5726
    [13] Shen R, Yu L, Xu P, Liang ZW, Lu QH, Liang DW, He ZL, Wang SQ. Water content as a primary parameter determines microbial reductive dechlorination activities in soil[J]. Chemosphere, 2021, 267:129152
    [14] 许玫英, 虞志强, 杨永刚, 陈杏娟, 孙国萍, 郭俊. 微生物厌氧呼吸与有机污染水体沉积物修复[J]. 微生物学杂志, 2017, 37(2):1-11 Xu MY, Yu ZQ, Yang YG, Chen XJ, Sun GP, Guo J. Microbial anaerobic respiration and remediation of aquatic sediments contaminated by refractory organic pollutants[J]. Journal of Microbiology, 2017, 37(2):1-11(in Chinese)
    [15] Leys D, Adrian L, Smidt H. Organohalide respiration:microbes breathing chlorinated molecules[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616):20120316
    [16] Richardson RE. Genomic insights into organohalide respiration[J]. Current Opinion in Biotechnology, 2013, 24(3):498-505
    [17] Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H. Structural basis for organohalide respiration[J]. Science, 2014, 346(6208):455-458
    [18] DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium[J]. Archives of Microbiology, 1990, 154(1):23-30
    [19] Sun B, Cole JR, Sanford RA, Tiedje JM. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol[J]. Applied and Environmental Microbiology, 2000, 66(6):2408-2413
    [20] Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment:biogenic formation of organohalogens[J]. Chemosphere, 2003, 52(2):313-324
    [21] Labbé N, Parent S, Villemur R. Nitratireductor aquibiodomus gen. nov., sp. nov., a novel alpha- proteobacterium from the marine denitrification system of the Montreal Biodome (Canada)[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 1):269-273
    [22] Matturro B, Ubaldi C, Rossetti S. Microbiome dynamics of a polychlorobiphenyl (PCB) historically contaminated marine sediment under conditions promoting reductive dechlorination[J]. Frontiers in Microbiology, 2016, 7:1502
    [23] Valo RJ, Häggblom MM, Salkinoja-Salonen MS. Bioremediation of chlorophenol containing simulated ground water by immobilized bacteria[J]. Water Research, 1990, 24(2):253-258
    [24] McCarty PL. In situ bioremediation of chlorinated solvents[J]. Current Opinion in Biotechnology, 1993, 4(3):323-330
    [25] Harkness MR, Bracco AA, Brennan MJ, DeWeerd KA, Spivack JL. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns[J]. Environmental Science & Technology, 1999, 33(7):1100-1109
    [26] Quinlan C, Strevett K, Ketcham M, Grego J. VOC elimination in a compost biofilter using a previously acclimated bacterial inoculum[J]. Journal of the Air & Waste Management Association, 1999, 49(5):544-553
    [27] Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater[J]. Environmental Science & Technology, 1999, 33(16):2771-2781
    [28] Cope N, Hughes JB. Biologically-enhanced removal of PCE from NAPL source zones[J]. Environmental Science & Technology, 2001, 35(10):2014-2021
    [29] Maphosa F, De Vos WM, Smidt H. Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria[J]. Trends in Biotechnology, 2010, 28(6):308-316
    [30] Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals[J]. Archives of Microbiology, 1993, 159(4):336-344
    [31] Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium[J]. Applied and Environmental Microbiology, 2006, 72(4):2775-2782
    [32] Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov.[J]. Applied and Environmental Microbiology, 2003, 69(5):2964-2974
    [33] Peng P, Goris T, Lu Y, Nijsse B, Burrichter A, Schleheck D, Koehorst JJ, Liu J, Sipkema D, Sinninghe Damste JS, et al. Organohalide-respiring Desulfoluna species isolated from marine environments[J]. The ISME Journal, 2020, 14(3):815-827
    [34] Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor[J]. Environmental Microbiology Reports, 2010, 2(2):289-294
    [35] Boyle AW, Phelps CD, Young LY. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol[J]. Applied and Environmental Microbiology, 1999, 65(3):1133-1140
    [36] Lohner ST, Spormann AM. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616):20120326
    [37] Wang YB, Wu CY, Wang XJ, Zhou SG. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01[J]. Journal of Hazardous Materials, 2009, 164(2-3):941-947
    [38] Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS. Note:Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria[J]. International Journal of Systematic Bacteriology, 1999, 49(Pt 3):1177-1180
    [39] Luijten MLGC, De Weert J, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 3):787-793
    [40] Schubert T. The organohalide-respiring bacterium Sulfurospirillum multivorans:a natural source for unusual cobamides[J]. World Journal of Microbiology & Biotechnology, 2017, 33(5):93
    [41] Fletcher KE, Ritalahti KM, Pennell KD, Takamizawa K, Löffler FE. Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacteriumhafniense strain JH1[J]. Applied and Environmental Microbiology, 2008, 74(19):6141-6143
    [42] Grostern A, Edwards EA. Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene[J]. Applied and Environmental Microbiology, 2009, 75(9):2684-2693
    [43] Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH. A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene[J]. Environmental Science & Technology, 2011, 45(16):6806-6813
    [44] Nelson JL, Jiang JD, Zinder SH. Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp.[J]. Environmental Science & Technology, 2014, 48(7):3776-3782
    [45] Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE. Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment[J]. Applied and Environmental Microbiology, 2012, 78(4):1288-1291
    [46] Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene[J]. Science, 1997, 276(5318):1568-1571
    [47] He JZ, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe[J]. Environmental Microbiology, 2005, 7(9):1442-1450
    [48] Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 2):625-635
    [49] LaRoe SL, Fricker AD, Bedard DL. Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination process N[J]. Environmental Science & Technology, 2014, 48(16):9187-9196
    [50] Moe WM, Yan J, Nobre MF, Da Costa MS, Rainey FA. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 11):2692-2697
    [51] Maness AD, Bowman KS, Yan J, Rainey FA, Moe WM. Dehalogenimonas spp. can reductively dehalogenate high concentrations of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane[J]. AMB Express, 2012, 2(1):54
    [52] Bowman KS, Nobre MF, Da Costa MS, Rainey FA, Moe WM. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 4):1492-1498
    [53] Molenda O, Quaile AT, Edwards EA. Dehalogenimonas sp. strain WBC-2 genome and identification of its trans-dichloroethene reductive dehalogenase, TdrA[J]. Applied and Environmental Microbiology, 2015, 82(1):40-50
    [54] Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Ogles DM, Löffler FE. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes[J]. The ISME Journal, 2017, 11(12):2767-2780
    [55] May HD, Sowers KR. "Dehalobium chlorocoercia" DF-1-From Discovery to Application[A]//Adrian L, Löffler FE. Organohalide-Respiring Bacteria[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2016:563-586
    [56] Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M. Complete chloroform dechlorination by organochlorine respiration and fermentation[J]. Environmental Microbiology, 2012, 14(4):883-894
    [57] Zhu CJ, Sun GP, Chen XJ, Guo J, Xu MY. Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 11):3644-3649
    [58] Chen XJ, Wang HJ, Xu JJ, Song D, Sun GP, Xu MY. Sphingobium hydrophobicum sp. nov., a hydrophobic bacterium isolated from electronic-waste-contaminated sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10):3912-3916
    [59] Chan PWY, Yakunin AF, Edwards EA, Pai EF. Mapping the reaction coordinates of enzymatic defluorination[J]. Journal of the American Chemical Society, 2011, 133(19):7461-7468
    [60] Dolfing J. Energetic Considerations in Organohalide Respiration[A]//Adrian L, Löffler FE. Organohalide- Respiring Bacteria[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2016:31-48
    [61] Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration[J]. Archives of Microbiology, 1998, 169(4):313-321
    [62] Löffler FE, Ritalahti KM, Zinder SH. Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents[A]//Stroo HF, Leeson A, Ward CH. Bioaugmentation for Groundwater Remediation[M]. New York:Springer New York, 2013:39-88
    [63] Yan J, Rash BA, Rainey FA, Moe WM. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane[J]. Environmental Microbiology, 2009, 11(4):833-843
    [64] Dolfing J, Novak I. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments[J]. Biodegradation, 2015, 26:15-27
    [65] Wang SQ, Qiu L, Liu XW, Xu GF, Siegert M, Lu QH, Juneau P, Yu L, Liang DW, He ZL, et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications[J]. Biotechnology Advances, 2018, 36(4):1194-1206
    [66] Fincker M, Spormann AM. Biochemistry of catabolic reductive dehalogenation[J]. Annual Review of Biochemistry, 2017, 86:357-386
    [67] Vogel TM. Reductive Dehalogenation[M]//Zehnder AJB. Soil and Groundwater Pollution:Fundamentals, Risk Assessment and legislation. Dordrecht:Springer Netherlands. 1995:27-30
    [68] Fetzner S. Bacterial dehalogenation[J]. Applied Microbiology and Biotechnology, 1998, 50(6):633-657
    [69] Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus[J]. Applied and Environmental Microbiology, 2003, 69(8):4628-4638
    [70] Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation[J]. Nature, 2015, 517(7535):513-516
    [71] Magnuson JK, Romine MF, Burris DR, Kingsley MT. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes:sequence of tceA and substrate range characterization[J]. Applied and Environmental Microbiology, 2000, 66(12):5141-5147
    [72] Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE. Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi[J]. Applied and Environmental Microbiology, 2014, 80(3):808-818
    [73] Jugder BE, Bohl S, Lebhar H, Healey RD, Manefield M, Marquis CP, Lee M. A bacterial chloroform reductive dehalogenase:purification and biochemical characterization[J]. Microbial Biotechnology, 2017, 10(6):1640-1648
    [74] van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJM, de Vos WM. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans[J]. Journal of Biological Chemistry, 1999, 274(29):20287-20292
    [75] Futagami T, Goto M, Furukawa K. Biochemical and genetic bases of dehalorespiration[J]. The Chemical Record, 2008, 8(1):1-12
    [76] Liao RZ, Chen SL, Siegbahn PEM. Unraveling the mechanism and regioselectivity of the B12-dependent reductive dehalogenase PceA[J]. Chemistry, 2016, 22(35):12391-12399
    [77] Adrian L, Rahnenführer J, Gobom J, Hölscher T. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1[J]. Applied and Environmental Microbiology, 2007, 73(23):7717-7724
    [78] Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC. Dehalogenases:from improved performance to potential microbial dehalogenation applications[J]. Molecules, 2018, 23(5):1100
    [79] Jugder BE, Ertan H, Lee M, Manefield M, Marquis CP. Reductive dehalogenases come of age in biological destruction of organohalides[J]. Trends in Biotechnology, 2015, 33(10):595-610
    [80] Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM. Biochemical and EPR- spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS[J]. Journal of the American Chemical Society, 2015, 137(10):3525-3532
    [81] Yang Y, Cápiro NL, Marcet TF, Yan J, Pennell KD, Löffler FE. Organohalide respiration with chlorinated ethenes under low pH conditions[J]. Environmental Science & Technology, 2017, 51(15):8579-8588
    [82] Wu Q, Bedard DL, Wiegel J. Effect of incubation temperature on the route of microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments[J]. Applied and Environmental Microbiology, 1997, 63(7):2836-2843
    [83] Wiegel J, Wu QZ. Microbial reductive dehalogenation of polychlorinated biphenyls[J]. FEMS Microbiology Ecology, 2000, 32(1):1-15
    [84] McCarty PL, Chu MY, Kitanidis PK. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater[J]. European Journal of Soil Biology, 2007, 43(5-6):276-282
    [85] Adamson DT, Lyon DY, Hughes JB. Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous-phase liquid[J]. Environmental Science & Technology, 2004, 38(7):2021-2028
    [86] Hiortdahl KM, Borden RC. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2[J]. Environmental Science & Technology, 2014, 48(1):624-631
    [87] Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene- utilizing, strictly anaerobic bacterium[J]. Archives of Microbiology, 1995, 163(1):48-56
    [88] Low A, Zhao SY, Rogers MJ, Zemb O, Lee M, He JZ, Manefield M. Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer[J]. FEMS Microbiology Ecology, 2019, 95(5):fiz055
    [89] Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture[J]. Water Research, 2007, 41(2):355-364
    [90] Marcet TF, Cápiro NL, Yang Y, Löffler FE, Pennell KD. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions[J]. Water Research, 2018, 145:21-29
    [91] Fletcher KE, Costanza J, Cruz-Garcia C, Ramaswamy NS, Pennell KD, Löffler FE. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance[J]. Environmental Science & Technology, 2011, 45(2):712-718
    [92] Kuokka S, Rantalainen AL, Romantschuk M, Häggblom MM. Effect of temperature on the reductive dechlorination of 1,2,3,4-tetrachlorodibenzofuran in anaerobic PCDD/F-contaminated sediments[J]. Journal of Hazardous Materials, 2014, 274:72-78
    [93] Triplett Kingston JL, Dahlen PR, Johnson PC. State-of-the-practice review of in situ thermal technologies[J]. Groundwater Monitoring & Remediation, 2010, 30(4):64-72
    [94] Zhou ZJ, Ge L, Huang YF, Liu YQ, Wang SY. Coupled relationships among anammox, denitrification, and dissimilatory nitrate reduction to ammonium along salinity gradients in a Chinese estuarine wetland[J]. Journal of Environmental Sciences, 2021, 106:39-46
    [95] Van Den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM. Effects of chemical oxygen demand, nutrients and salinity on sulfate-reducing bacteria[J]. Environmental Engineering Science, 2015, 32(10):858-864
    [96] Sørensen KB, Canfield DE, Oren A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel)[J]. Applied and Environmental Microbiology, 2004, 70(3):1608-1616
    [97] Zhang KP, Shi Y, Cui XQ, Yue P, Li KH, Liu XJ, Tripathi BM, Chu HY. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. mSystems, 2019, 4(1):e00225-e00218
    [98] Banda JF, Zhang Q, Ma LQ, Pei LX, Du ZR, Hao CB, Dong HL. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China[J]. Science of the Total Environment, 2021, 791:148108
    [99] Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han SS, Goodwin L, et al. Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to "Dehalococcoides" strains[J]. Standards in Genomic Sciences, 2012, 6(2):251-264
    [100] Li Y, Li B, Wang CP, Fan JZ, Sun HW. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates[J]. International Journal of Molecular Sciences, 2014, 15(5):9134-9148
    [101] Dam HT, Häggblom MM. Impact of estuarine gradients on reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin in river sediment enrichment cultures[J]. Chemosphere, 2017, 168:1177-1185
    [102] Allen RH, Stabler SP. Identification and quantitation of cobalamin and cobalamin analogues in human feces[J]. The American Journal of Clinical Nutrition, 2008, 87(5):1324-1335
    [103] Yan J, Şimşir B, Farmer AT, Bi M, Yang Y, Campagna SR, Löffler FE. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi[J]. The ISME Journal, 2016, 10(5):1092-1101
    [104] Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania KH, Gruber K, Kratky C, Mikl C, Siebert A, Diekert G. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid[J]. Helvetica Chimica Acta, 2003, 86(11):3698-3716
    [105] Keller S, Ruetz M, Kunze C, Kräutler B, Diekert G, Schubert T. Exogenous 5,6-dimethylbenzimidazole caused production of a non-functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans[J]. Environmental Microbiology, 2014, 16(11):3361-3369
    [106] Yan J, Ritalahti KM, Wagner DD, Löffler FE. Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains[J]. Applied and Environmental Microbiology, 2012, 78(18):6630-6636
    [107] Yan J, Im J, Yang Y, Löffler FE. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616):20120320
    [108] Scott AI, Roessner CA. Biosynthesis of cobalamin (vitamin B12)[J]. Biochemical Society Transactions, 2002, 30(4):613-620
    [109] Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L. Organic cofactors in the metabolism of Dehalococcoides mccartyi strains[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616):20120321
    [110] Aulenta F, Bianchi A, Majone M, Petrangeli Papini M, Potalivo M, Tandoi V. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy:a microcosm study[J]. Environment International, 2005, 31(2):185-190
    [111] He JZ, Holmes VF, Lee PKH, Alvarez-Cohen L. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium[J]. Applied and Environmental Microbiology, 2007, 73(9):2847-2853
    [112] Mukherjee K, Bowman KS, Rainey FA, Siddaramappa S, Challacombe JF, Moe WM. Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors[J]. FEMS Microbiology Letters, 2014, 354(2):111-118
    [113] 吕燕, 李秀颖, 王晶晶, 金慧娟, 崔逸儒, 杨毅, 严俊. 一株脱卤单胞菌属有机卤呼吸细菌的分离纯化与基础特征[J]. 微生物学报, 2021, 61(4):1016-1029 Lv Y, Li XY, Wang JJ, Jin HJ, Cui YR, Yang Y, Yan J. Isolation and basic characterization of a novel organohaliderespiring bacterium within the genus Dehalogenimonas[J]. Acta Microbiologica Sinica, 2021, 61(4):1016-1029(in Chinese)
    [114] Lee IS, Bae JH, McCarty PL. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE[J]. Journal of Contaminant Hydrology, 2007, 94(1-2):76-85
    [115] 崔逸儒, 杨毅, 严俊, 李秀颖. 脱卤单胞菌属在厌氧降解有机氯化物及污染场地修复应用中的研究进展[J]. 生物工程学报, 2021, 37(10):3565-3577 Cui YR, Yang Y, Yan J, Li XY. Advances of using Dehalogenimonas in anaerobic degradation of chlorinated compounds and bioremediation of contaminated sites[J]. Chinese Journal of Biotechnology, 2021, 37(10):3565-3577(in Chinese)
    [116] 严俊, 姜丽思, 杨毅, 李秀颖. 一株新型有机卤呼吸地质杆菌及其应用[P]:CN112111420A. 2020-12-22 Yan J, Jiang LS, Yang Y, Li XY. A novel organohalide respiration Geobacter and the application[P]:China, CN112111420A. 2020-12-22(in Chinese)
    [117] 王晶晶. 硝酸盐还原对有机氯厌氧生物降解的抑制作用及机理研究[D]. 北京:中国科学院大学博士学位论文, 2021 Wang JJ. Inhibition of nitrate reduction on reductive dechlorination of chlorinated compounds[D]. Beijing:Docter's Thesis of University of Chinese Academy of Sciences, 2021(in Chinese)
    [118] Wang JG, Sun ZR. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process[J]. Journal of Hazardous Materials, 2020, 392:122293
    [119] Häggblom MM, Rivera MD, Young LY. Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols[J]. Environmental Toxicology and Chemistry, 1993, 12(8):1395-1403
    [120] Doong RA, Chen TF, Chang WH. Effects of electron donor and microbial concentration on the enhanced dechlorination of carbon tetrachloride by anaerobic consortia[J]. Applied Microbiology and Biotechnology, 1996, 46(2):183-186
    [121] Aulenta F, Pera A, Rossetti S, Petrangeli Papini M, Majone M. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors[J]. Water Research, 2007, 41(1):27-38
    [122] Philips J, Haest PJ, Springael D, Smolders E. Inhibition of Geobacter dechlorinators at elevated trichloroethene concentrations is explained by a reduced activity rather than by an enhanced cell decay[J]. Environmental Science & Technology, 2013, 47(3):1510-1517
    [123] Yang YR, McCarty PL. Biologically enhanced dissolution of tetrachloroethene DNAPL[J]. Environmental Science & Technology, 2000, 34(14):2979-2984
    [124] Huang DY, Becker JG. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations[J]. Environmental Science & Technology, 2011, 45(3):1093-1099
    [125] Amos BK, Christ JA, Abriola LM, Pennell KD, Löffler FE. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution[J]. Environmental Science & Technology, 2007, 41(3):963-970
    [126] Zhao SY, He JZ. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G[J]. FEMS Microbiology Ecology, 2019, 95(1):fiy209
    [127] Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride[J]. Water Research, 2002, 36(17):4193-4202
    [128] Wang SQ, Chng KR, Wilm A, Zhao SY, Yang KL, Nagarajan N, He JZ. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. PNAS, 2014, 111(33):12103-12108
    [129] Xu GF, Lu QH, Yu L, Wang SQ. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm[J]. Water Research, 2019, 152:87-95
    [130] Kuo CE, Liu SM, Liu C. Biodegradation of coplanar polychlorinated biphenyls by anaerobic microorganisms from estuarine sediments[J]. Chemosphere, 1999, 39(9):1445-1458
    [131] Baba D, Yoshida N, Katayama A. Effects of inhibitors on anaerobic microbial consortium with enhanced dechlorination activity in polychlorinated biphenyl mixture[J]. Journal of Bioscience and Bioengineering, 2007, 104(4):268-274
    [132] El Mamouni R, Jacquet R, Gerin P, Agathos SN. Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel:laboratory- and pilot-scale study[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2002, 45(10):49-54
    [133] Heimann AC, Friis AK, Jakobsen R. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply[J]. Water Research, 2005, 39(15):3579-3586
    [134] Aulenta F, Beccari M, Majone M, Papini MP, Tandoi V. Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures[J]. Process Biochemistry, 2008, 43(2):161-168
    [135] Mao XW, Polasko A, Alvarez-Cohen L. Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities[J]. Applied and Environmental Microbiology, 2017, 83(8):e03384-e03316
    [136] Xu Y, Xue LL, Ye Q, Franks AE, Zhu M, Feng X, Xu JM, He Y. Inhibitory effects of sulfate and nitrate reduction on reductive dechlorination of PCP in a flooded paddy soil[J]. Frontiers in Microbiology, 2018, 9:567
    [137] Nelson DK, Hozalski RM, Clapp LW, Semmens MJ, Novak PJ. Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture[J]. Bioremediation Journal, 2002, 6(3):225-236
    [138] Zwiernik MJ, Quensen JF, Boyd SA. FeSO4 amendments stimulate extensive anaerobic PCB dechlorination[J]. Environmental Science & Technology, 1998, 32(21):3360-3365
    [139] Squillace PJ, Scott JC, Moran MJ, Nolan BT, Kolpin DW. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States[J]. Environmental Science & Technology, 2002, 36(9):1923-1930
    [140] Bennett P, Gandhi D, Warner S, Bussey J. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater[J]. Journal of Hazardous Materials, 2007, 149(3):568-573
    [141] Lee J, Im J, Kim U, Löffler FE. A data mining approach to predict in situ detoxification potential of chlorinated ethenes[J]. Environmental Science & Technology, 2016, 50(10):5181-5188
    [142] Holliger C. The anaerobic microbiology and biotreatment of chlorinated ethenes[J]. Current Opinion in Biotechnology, 1995, 6(3):347-351
    [143] Yu HY, Wang YK, Chen PC, Li FB, Chen MJ, Hu M, Ouyang XG. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(Ⅲ) reduction[J]. Journal of Environmental Management, 2014, 132:42-48
    [144] Cao LF, Sun WH, Zhang YT, Feng SM, Dong JY, Zhang YM, Rittmann BE. Competition for electrons between reductive dechlorination and denitrification[J]. Frontiers of Environmental Science & Engineering, 2017, 11(6):14
    [145] Blackburn R, Kyaw M, Swallow AJ. Reaction of cob(Ⅰ)alamin with nitrous oxide and cob(Ⅲ)alamin[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1977, 73:250-255
    [146] Sullivan MJ, Gates AJ, Appia-Ayme C, Rowley G, Richardson DJ. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism[J]. PNAS, 2013, 110(49):19926-19931
    [147] Yin YC, Yan J, Chen G, Murdoch FK, Pfisterer N, Löffler FE. Nitrous oxide is a potent inhibitor of bacterial reductive dechlorination[J]. Environmental Science & Technology, 2019, 53(2):692-701
    [148] Tas DO, Pavlostathis SG. Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene[J]. Environmental Science & Technology, 2008, 42(9):3234-3240
    [149] Kato MT, Field JA, Lettinga G. High tolerance of methanogens in granular sludge to oxygen[J]. Biotechnology and Bioengineering, 1993, 42(11):1360-1366
    [150] Natarajan MR, Wang H, Hickey R, Bhatnagar L. Effect of oxygen and storage conditions on the metabolic activities of polychlorinated biphenyls dechlorinating microbial granules[J]. Applied Microbiology and Biotechnology, 1995, 43(4):733-738
    [151] Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH. Growth of Dehalococcoides strains with chlorophenols as electron acceptors[J]. Environmental Science & Technology, 2007, 41(7):2318-2323
    [152] Liu N, Li HJ, Li MY, Ding LZ, Weng CH, Dong CD. Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium[J]. Bioresource Technology, 2017, 240:98-105
    [153] Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(Ⅵ), mercury (Hg), and lead (Pb)) on the total environment:an overview[J]. Environmental Monitoring and Assessment, 2019, 191(7):419
    [154] Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites:concepts, applications and challenges[J]. Environmental Science and Pollution Research International, 2020, 27(22):27563-27581
    [155] Arjoon A, Olaniran AO, Pillay B. Co-contamination of water with chlorinated hydrocarbons and heavy metals:challenges and current bioremediation strategies[J]. International Journal of Environmental Science and Technology, 2013, 10(2):395-412
    [156] Zhang WH, Wu YX, Simonnot MO. Soil contamination due to E-waste disposal and recycling activities:a review with special focus on China[J]. Pedosphere, 2012, 22(4):434-455
    [157] Kong IC, Hubbard JS, Jones WJ. Metal-induced inhibition of anaerobic metabolism of volatile fatty acids and hydrogen[J]. Applied Microbiology and Biotechnology, 1994, 42(2/3):396-402
    [158] Aljerf L. A gateway to metal resistance:bacterial response to heavy metal toxicity in the biological environment[J]. Annals of Advances in Chemistry, 2018, 2:32-44
    [159] Pardue JH, Kongara S, Jones JW. Effect of cadmium on reductive dechlorination of trichloroaniline[J]. Environmental Toxicology and Chemistry, 1996, 15(7):1083-1088
    [160] Prabhakaran P, Ashraf MA, Aqma WS. Microbial stress response to heavy metals in the environment[J]. RSC Advances, 2016, 6(111):109862-109877
    [161] Kuo C, Genthner B. Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia[J]. Applied and Environmental Microbiology, 1996, 62(7):2317-2323
    [162] Jeong HY, Hayes KF. Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite[J]. Environmental Science & Technology, 2003, 37(20):4650-4655
    [163] Lu QH, Zou XQ, Liu JT, Liang ZW, Shim H, Qiu RL, Wang SQ. Inhibitory effects of metal ions on reductive dechlorination of polychlorinated biphenyls and perchloroethene in distinct organohalide-respiring bacteria[J]. Environment International, 2020, 135:105373
    [164] Schaefer CE, Condee CW, Vainberg S, Steffan RJ. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.:comparison between batch and column experiments[J]. Chemosphere, 2009, 75(2):141-148
    [165] Holliger C, Schraa G, Stams AJ, Zehnder AJ. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth[J]. Applied and Environmental Microbiology, 1993, 59(9):2991-2997
    [166] Isalou M, Sleep BE, Liss SN. Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system[J]. Environmental Science & Technology, 1998, 32(22):3579-3585
    [167] Adamson DT, McDade JM, Hughes JB. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE[J]. Environmental Science & Technology, 2003, 37(11):2525-2533
    [168] Mendoza-Sanchez I, Autenrieth RL, McDonald TJ, Cunningham JA. Biological limitations of dechlorination of cis-dichloroethene during transport in porous media[J]. Environmental Science & Technology, 2018, 52(2):684-691
    [169] Doong RA, Chen TF, Wu YW. Anaerobic dechlorination of carbon tetrachloride by free-living and attached bacteria under various electron-donor conditions[J]. Applied Microbiology and Biotechnology, 1997, 47(3):317-323
    [170] Yang LR, Hnatko JP, Elsey JL, Christ JA, Pennell KD, Cápiro NL, Abriola LM. Exploration of processes governing microbial reductive dechlorination in a heterogeneous aquifer flow cell[J]. Water Research, 2021, 193:116842
    [171] Chung J, Rittmann BE. Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor[J]. Biotechnology and Bioengineering, 2007, 97(1):52-60
    [172] Long M, Ilhan ZE, Xia SQ, Zhou C, Rittmann BE. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR)[J]. Water Research, 2018, 144:134-144
    [173] Chang CC, Tseng SK, Chang CC, Ho CM. Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions[J]. Chemosphere, 2004, 56(10):989-997
    [174] Long M, Zeng C, Wang ZC, Xia SQ, Zhou C. Complete dechlorination and mineralization of para-chlorophenol (4-CP) in a hydrogen-based membrane biofilm reactor (MBfR)[J]. Journal of Cleaner Production, 2020, 276:123257
    [175] Fathepure BZ, Tiedje JM. Reductive dechlorination of tetrachloroethylene by a chlorobenzoate-enriched biofilm reactor[J]. Environmental Science & Technology, 1994, 28(4):746-752
    [176] Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution[J]. Applied and Environmental Microbiology, 2004, 70(8):4880-4888
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晶晶,李秀颖,宋玉芳,严俊,杨毅. 环境因子对厌氧微生物脱卤的影响研究进展[J]. 微生物学通报, 2022, 49(10): 4357-4381

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-30
  • 录用日期:2022-04-12
  • 在线发布日期: 2022-10-08
  • 出版日期: 2022-10-20
文章二维码