科微学术

微生物学通报

乳酸乳球菌双组分系统调控有氧呼吸的研究
作者:
基金项目:

国家重点研发计划(2018YFA0901700);青海省高原放牧家畜动物营养与饲料科学重点实验室(2022-ZJ-Y17);青海省“昆仑英才·高端创新创业人才”拔尖人才项目(2020);中科院“西部之光”人才培养引进计划“西部青年学者”A类项目;国家自然科学基金(U20A20400,31501449)


Preliminary study on the regulation of aerobic respiration by two-component system of Lactococcus lactis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】乳酸乳球菌作为食品行业的代表性菌株,如何通过双组分系统响应环境因子与代谢调控的分子机制研究,对发酵食品产业和益生菌制剂行业有着重要的意义。【目的】探究乳酸乳球菌双组分系统对有氧呼吸代谢调控的相关网络,为乳酸菌适应性代谢研究提供新思路。【方法】采用生物信息学方法,系统性地分析乳酸乳球菌双组分系统组氨酸激酶和反应调节因子的结构域组成及预测双组分系统功能,筛选出与有氧呼吸有潜在联系的双组分,并进一步通过基因转录表达和非靶向代谢组学验证。【结果】以乳酸乳球菌的代表菌株NZ9000为例构建相互作用蛋白网络,显示双组分系统与丙酮酸代谢网络关键连接点为丙酮酸铁氧还蛋白氧化还原酶(nifJ)。在不同的生长时期,Lactococcus lactis NZ9000双组分转录表达在延滞期变化显著。与厌氧培养相比,有氧培养和有氧呼吸培养的菌体双组分呈现下调趋势。双组分系统参与乳酸菌氧化应激和血红素胁迫过程。【结论】明确乳酸乳球菌参与有氧呼吸的双组分系统以及代谢通路,有助于提高发酵剂、益生菌剂的存活率和竞争力。

    Abstract:

    [Background] Lactococcus lactis is a representative strain in the food industry. The molecular mechanism of L. lactis responding to environmental factors and the metabolic regulation through the two-component system is of great importance to the fermented food and the probiotics industries. [Objective] This study aimed to explore the effect of two-component system of L. lactis on aerobic respiration metabolism, and was expected to supply a new direction for adaptive metabolism in lactic acid bacteria. [Methods] The domainof sensor histidine kinases and response regulatory factor as well as the function of the two-component system in L. lactis was systematically analyzed using bioinformatics methods. The correlations between two-component system and aerobic respiration were calculated and further verified by transcriptional expression and untargeted metabolomics. [Results] The protein-protein interaction network of the representative L. lactis strain NZ9000 showed that the key connection point between the two-component system and pyruvate metabolism in the network was pyruvate-ferredoxin oxidoreductase (nifJ). At different growth stages, the transcriptional expression of the two-componentsystem in L. lactis NZ9000 changed significantly in the lag period. Compared with the anaerobic culture, the transcriptional expression of the two-component system in L. lactis NZ9000 cultivated under aerobic culture and aerobic respiratory culture was down-regulated. The two-component system participated in oxidative stress and heme stress in lactic acid bacteria. [Conclusion] To identify the two-component system and metabolic pathway of Lactococcus lactis involved in aerobic respiration. It can improve the survival rate and competitiveness of starters and probiotics.

    参考文献
    [1] Hu YY, Zhang L, Wen RX, Chen Q, Kong BH. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods:a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(10):2741-2755
    [2] Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis:from food to factory[J]. Microbial Cell Factories, 2017, 16(1):55
    [3] Galperin MY. Structural classification of bacterial response regulators:diversity of output domains and domain combinations[J]. Journal of Bacteriology, 2006, 188(12):4169-4182
    [4] Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria[J]. Advances in Applied Microbiology, 2017, 99:1-51
    [5] Laub MT, Goulian M. Specificity in two-component signal transduction pathways[J]. Annual Review of Genetics, 2007, 41:121-145
    [6] Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. Structural insights into the signalling mechanisms of two-component systems[J]. Nature Reviews Microbiology, 2018, 16(10):585-593
    [7] Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction[J]. Journal of Molecular Biology, 2016, 428(19):3752-3775
    [8] 付龙云. 乳酸菌抗氧胁迫及有氧生长的研究[D]. 山东大学博士学位论文, 2013 Fu LY. The oxidative stress resistance and aerobic growth of lactic acid bacteria[D]. Doctoral Dissertation of Shandong University, 2013(in Chinese)
    [9] Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems[J]. Genes &Development, 2008, 22(19):2601-2611
    [10] Qi W, Li XX, Guo YH, Bao YZ, Wang N, Luo XG, Yu CD, Zhang TC. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcuslactis ssp. lactis CICC23200[J]. Journal of Dairy Science, 2020, 103(9):7834-7850
    [11] Taylor BL, Zhulin IB. PAS domains:internal sensors of oxygen, redox potential, and light[J]. Microbiology and Molecular Biology Reviews:MMBR, 1999, 63(2):479-506
    [12] Gao R, Bouillet S, Stock AM. Structural basis of response regulator function[J]. Annual Review of Microbiology, 2019, 73:175-197
    [13] Kenney LJ, Anand GS. EnvZ/OmpR two-component signaling:an archetype system that can function noncanonically[J]. EcoSal Plus, 2020, 9(1):10.1128/ecosalplus.ESP-10.1128/ecosalplus0001-2019
    [14] Ravikumar S, David Y, Park SJ, Choi JI. A chimeric two-component regulatory system-based Escherichiacoli biosensor engineered to detect glutamate[J]. Applied Biochemistry and Biotechnology, 2018, 186(2):335-349
    [15] Shimada T, Takada H, Yamamoto K, Ishihama A. Expanded roles of two-component response regulator OmpR in Escherichia coli:genomic SELEX search for novel regulation targets[J]. Genes to Cells, 2015, 20(11):915-931
    [16] O'Connell-Motherway M, Van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P. Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363[J]. Microbiology, 2000, 146(4):935-947
    [17] Parkinson JS. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases[J]. Annual Review of Microbiology, 2010, 64:101-122
    [18] Williams SB, Stewart V. Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction[J]. Molecular Microbiology, 1999, 33(6):1093-1102
    [19] Stuffle EC, Johnson MS, Watts KJ. PAS domains in bacterial signal transduction[J]. Current Opinion in Microbiology, 2021, 61:8-15
    [20] Amezcua CA, Harper SM, Rutter J, Gardner KH. Structure and interactions of PAS kinase N-terminal PAS domain[J]. Structure, 2002, 10(10):1349-1361
    [21] Hefti MH, Françoijs KJ, De Vries SC, Dixon R, Vervoort J. The PAS fold. A redefinition of the PAS domain based upon structural prediction[J]. European Journal of Biochemistry, 2004, 271(6):1198-1208
    [22] 王文栋, 束梅影, 张达艳, 徐世清. 家蚕昼夜节律生物钟基因的生物信息学分析[J]. 四川动物, 2016, 35(2):275-282 Wang WD, Shu MY, Zhang DY, Xu SQ. Bioinformatics analysis of circadian rhythm biological clock genes in Bombyx mori[J]. Sichuan Journal of Zoology, 2016, 35(2):275-282(in Chinese)
    [23] Hu T, Zhang YS, Cui Y, Zhao C, Jiang X, Zhu X, Wang Y, Qu X. Technological properties assessment and two component systems distribution of Streptococcusthermophilus strains isolated from fermented milk[J]. Archives of Microbiology, 2018, 200(4):567-580
    [24] Thevenard B, Besset C, Choinard S, Fourcassié P, Boyaval P, Monnet V, Rul F. Response of S. thermophilus LMD-9 to bacitracin:involvement of a BceRS/AB-like module and of the rhamnose-glucose polysaccharide synthesis pathway[J]. International Journal of Food Microbiology, 2014, 177(5):89-97
    [25] Fontaine L, Boutry C, Guédon E, Guillot A, Ibrahim M, Grossiord B, Hols P.. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcusthermophilus[J]. Journal of Bacteriology, 2007, 189(20):7195-7205
    [26] Zhang DF, Ye JZ, Dai HH, Lin XM, Li H, Peng XX. Identification of ethanol tolerant outer membrane proteome reveals OmpC-dependent mechanism in a manner of EnvZ/OmpR regulation in Escherichiacoli[J]. Journal of Proteomics, 2018, 179:92-99
    [27] Zhang CK, Li LZ, Ge HJ, Meng HM, Li Y, Bei WC, Zhou XH. Role of two-component regulatory systems in the virulence of Streptococcus suis[J]. Microbiological Research, 2018, 214:123-128
    [28] Jing Y, Fan J, Glatter T, Sourjik V. Osmosensing by the bacterial PhoQ/PhoP two-component system[J]. PNAS, 2017, 114(50):E10792-E10798
    [29] Yu SJ, Peng YP, Chen WY, Deng YW, Guo YH. Comparative genomic analysis of two-component signal transduction systems in probiotic Lactobacilluscasei[J]. Indian Journal of Microbiology, 2014, 54(3):293-301
    [30] Shankar M, Mohapatra SS, Biswas S, Biswas I. Gene regulation by the LiaSR two-component system in Streptococcus mutans[J]. PLoS One, 2015, 10(5):e0128083
    [31] Meehl M, Herbert S, Götz F, Cheung A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(8):2679-2689
    [32] Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in Staphylococci[J]. PLoS Pathogens, 2007, 3(7):e102
    [33] Sun G, Sharkova E, Chesnut R, Birkey S, Duggan MF, Sorokin A, Pujic P, Ehrlich SD, Hulett FM. Regulators of aerobic and anaerobic respiration in Bacillus subtilis[J]. Journal of Bacteriology, 1996, 178(5):1374-1385
    [34] Kobayashi K, Ogura M, Yamaguchi H, Yoshida K, Ogasawara N, Tanaka T, Fujita Y. Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems[J]. Journal of Bacteriology, 2001, 183(24):7365-7370
    [35] Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing[J]. Open Biology, 2018, 8(4):180023
    [36] Hackmann TJ, Firkins JL. Electron transport phosphorylation in rumen butyrivibrios:unprecedented ATP yield for glucose fermentation to butyrate[J]. Frontiers in Microbiology, 2015, 6:622
    [37] 李柏良, 刘飞, 于上富, 杜金城, 靳妲, 蒙月月, 李娜, 闫芬芬, 霍贵成. 有氧呼吸对乳酸乳球菌代谢途径的影响及其潜在应用展望[J]. 食品工业科技, 2016, 37(19):372-376 Li BL, Liu F, Yu SF, Du JC, Jin D, Meng YY, Li N, Yan FF, Huo GC. Impact of aerobic respiration on metabolic pathway of Lactococcus lactis and the prospect of potential application[J]. Science and Technology of Food Industry, 2016, 37(19):372-376(in Chinese)
    [38] Takada H, Yoshikawa H. Essentiality and function of WalK/WalR two-component system:the past, present, and future of research[J]. Bioscience Biotechnology and Biochemistry, 2018, 82(5):741-751
    [39] Nozadze E, Arutinova N, Tsakadze L, Shioshvili L, Leladze M, Dzneladze S, Chkadua G. Molecular mechanism of Mg-ATPase activity[J]. The Journal of Membrane Biology, 2015, 248(2):295-300
    [40] Gilles-Gonzalez MA, Gonzalez G, Perutz MF, Kiger L, Marden MC, Poyart C. Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation[J]. Biochemistry, 1994, 33(26):8067-8073
    [41] Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM, Zhulin IB, Taylor BL. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior[J]. PNAS, 1997, 94(20):10541-10546
    [42] Bibikov SI, Biran R, Rudd KE, Parkinson JS. A signal transducer for aerotaxis in Escherichia coli[J]. Journal of Bacteriology, 1997, 179(12):4075-4079
    [43] Huang ZJ, Edery I, Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors[J]. Nature, 1993, 364(6434):259-262
    [44] Chen C, Zhao SS, Hao GF, Yu H, Tian HX, Zhao GZ. Role of lactic acid bacteria on the yogurt flavour:a review[J]. International Journal of Food Properties, 2017, 201:S316-S330
    [45] McNeely K, Xu Y, Ananyev G, Bennette N, Bryant DA, Dismukes GC. Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:ferredoxin oxidoreductase[J]. Applied and Environmental Microbiology, 2011, 77(7):2435-2444
    [46] 谢翔, 公丕民, 刘奥, 张鸿伟, 仝令君, 易华西, 王亚威, 刘同杰, 张兰威. 商业发酵剂中乳酸乳球菌发酵风味特性及其化学表征的研究[J]. 食品工业科技, 2021, 42(19):152-162 Xie X, Gong PM, Liu A, Zhang HW, Tong LJ, Yi HX, Wang YW, Liu TJ, Zhang LW. Fermentation flavor characteristics and chemical characterization of Lactococcus lactis in commercial starters[J]. Science and Technology of Food Industry, 2021, 42(19):152-162(in Chinese)
    [47] Reale A, Renzo TD, Zotta T, Preziuso M, Boscaino F, Ianniello R, Storti LV, Tremonte P, Coppola R. Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation[J]. LWT, 2016, 73:622-629
    [48] Reale A, Ianniello RG, Ciocia F, Di Renzo T, Boscaino F, Ricciardi A, Coppola R, Parente E, Zotta T, McSweeney PLH. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese[J]. International Dairy Journal, 2016, 63:78-87
    [49] Li N, Huang Y, Liu Z, You C, Guo B. Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering[J]. Letters in Applied Microbiology, 2015, 61(6):555-561
    [50] Ge XY, Xu Y, Chen X, Zhang LY. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy[J]. Journal of Microbiology and Biotechnology, 2015, 25(1):81-88
    [51] Jiang LY, Liu Y, Yan GD, Cui YX, Cheng QY, Zhang ZX, Meng QF, Teng LR, Ren XD. Aeration and fermentation strategies on nisin production[J]. Biotechnology Letters, 2015, 37(10):2039-2045
    [52] Ianniello RG, Zotta T, Matera A, Genovese F, Parente E, Ricciardi A. Investigation of factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus casei N87[J]. PLoS One, 2016, 11(11):e0164065
    [53] Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, Van De Guchte M. Production of a heterologous nonheme catalase by Lactobacillus casei:an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk[J]. Applied and Environmental Microbiology, 2006, 72(8):5143-5149
    [54] Wang GH, Yin S, An HR, Chen SW, Hao YL. Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(8):985-990
    [55] 王芳, 张志军, 李会珍. 乳酸菌呼吸作用研究进展[J]. 安徽农业大学学报, 2014, 41(2):6 Wang F, Zhang ZJ, Li HZ, Respiration metabolism for lactic acid bacteria[J]. Journal of Anhui Agricultural University, 2014, 41(2):6
    [56] Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology[J]. Annual Review of Food Science and Technology, 2012, 3:37-58
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李子涵,葛艳艳,郭耀华,王楠,何红鹏,罗学刚,马文建,郝力壮,齐威. 乳酸乳球菌双组分系统调控有氧呼吸的研究[J]. 微生物学通报, 2022, 49(9): 3753-3769

复制
分享
文章指标
  • 点击次数:418
  • 下载次数: 1055
  • HTML阅读次数: 1160
  • 引用次数: 0
历史
  • 收稿日期:2022-01-23
  • 最后修改日期:2022-03-24
  • 在线发布日期: 2022-08-30
  • 出版日期: 2022-09-20
文章二维码