科微学术

微生物学通报

米修链霉菌TF78对香蕉枯萎病的田间防效及根际土壤微生物的影响
作者:
基金项目:

广西壮族自治区科技重大专项(桂科AA18118028-6);广西农业科学院科技发展基金(2015JZ40,2015JZ43,2015JZ56);广西农业科学院基本科研业务专项(桂农科2022YM06)


Effects of Streptomyces misionensis TF78 on fusarium wilt of field-grown banana and rhizosphere soil microorganisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】香蕉枯萎病是香蕉生产上的毁灭性病害,生物防治是遏制该病害发生的有效手段。在前期的研究中,从健康香蕉根际土壤中分离获得一株对香蕉枯萎病具有良好盆栽防治效果的生防菌——米修链霉菌(Streptomyces misionensis) TF78,但其对香蕉枯萎病的田间生防潜力和对土壤微生物环境的影响尚不清楚。【目的】评价米修链霉菌TF78对香蕉枯萎病的田间防治效果,明确其对香蕉根际土壤微生物群落的影响。【方法】选取两块发病香蕉园,测定该生防菌株对香蕉枯萎病的防治效果,并利用扩增子测序技术分析施用菌剂组和空白对照组共12份香蕉根际土壤的微生物多样性和丰度。【结果】米修链霉菌TF78对两块香蕉园的田间防效分别达55.30%和45.32%。该生防菌株处理组的物种稀释曲线坡度大于空白对照组,并显著富集了优势种群梳霉门(Kickxellomycota),消减了绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)和苔藓杆菌(Bryobacter)的丰度,对土壤中优势种群变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)及木霉属(Trichoderma)、鞘氨醇单胞菌属(Sphingomonas)、寡养单胞菌属(Stenotrophomonas)和芽孢杆菌属(Bacillus)的相对丰度影响不显著。【结论】米修链霉菌TF78塑造了不利于香蕉枯萎病菌Fusarium oxysporum f.sp.cubense存活的土壤环境,有效降低了田间香蕉枯萎病的发生,同时对土壤中大部分具有重要生态功能和抑菌功能的优势微生物种群影响不显著。该研究结果为米修链霉菌TF78的进一步开发应用奠定了基础。

    Abstract:

    [Background] Fusarium wilt of banana is a devastating disease in banana production. Biological control is an effective means to prevent the occurrence of this disease. In previous studies, Streptomyces misionensis TF78, a biocontrol strain, was isolated from the rhizosphere soil of healthy bananas, which showed good control effect on fusarium wilt of potted bananas. However, the biocontrol potential of S. misionensis TF78 against fusarium wilt of banana in the field and its impact on soil microbial environment are still unclear.[Objective] The paper was designed to evaluate the control effect of S. misionensis TF78 on fusarium wilt of banana in the field and determine its influence on the microbial communities in the rhizosphere soil of bananas. [Methods] The control effect of the biocontrol strain on fusarium wilt of banana was measured in two banana plantations. Microbial diversity and abundance of 12 rhizosphere soil samples from the inoculation group and the blank control group were analyzed by amplicon sequencing. [Results] The field control efficiency of S. misionensis TF78 on the two banana plantations were 55.30% and 45.32%. The slope for rarefaction curve of the inoculation group was larger than that of the blank control group, and Kickxellomycota was significantly enriched, while the abundances of Chloroflexi, Acidobacteria and Bryobacter were reduced. The biocontrol strain had no marked effect on the relative abundances of the dominant Proteobacteria, Firmicutes, Actinobacteria, Gemmatimonadetes, Trichoderma, Sphingomonas, Stenotrophomonas and Bacillus in the soil. [Conclusion] S. misionensis TF78 shaped the unfavorable soil environment to the survival of Fusarium oxysporum f. sp. cubense, and reduced the occurrence of fusarium wilt of banana in the field. Additionally, the strain failed to affect most of the dominant microbial populations with important ecological and bacteriostatic functions in the soil. The results lay a foundation for further development and application of S. misionensis TF78.

    参考文献
    [1] 李玉萍, 方佳. 中国香蕉产业现状与发展对策研究[J]. 中国农学通报, 2008, 24(8):443-447Li YP, Fang J. A survey on status and countermeasures of banana industry in China[J]. Chinese Agricultural Science Bulletin, 2008, 24(8):443-447(in Chinese)
    [2] Pegg KG, Coates LM, O'Neill WT, Turner DW. The epidemiology of Fusarium wilt of banana[J]. Frontiers in Plant Science, 2019, 10:1395
    [3] Dita M, Barquero M, Heck D, Mizubuti ESG, Staver CP. Fusarium wilt of banana:current knowledge on epidemiology and research needs toward sustainable disease management[J]. Frontiers in Plant Science, 2018, 9:1468
    [4] Shen Z, Xue C, Penton CR, Thomashow LS, Zhang N, Wang B, RuanY, Li R, Shen Q. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy[J]. Soil Biology and Biochemistry, 2019, 128:164-174
    [5] 汪军, 梁昌聪, 周游, 王国芬, 杨腊英, 刘磊, 黄俊生. 复合微生物肥料对香蕉枯萎病防控作用研究[J]. 热带农业科学, 2017, 37(8):36-41Wang J, Liang CC, Zhou Y, Wang GF, Yang LY, Liu L, Huang JS. Effect of compound microbial fertilizer on controlling of Fusarium wilt of banana[J]. Chinese Journal of Tropical Agriculture, 2017, 37(8):36-41(in Chinese)
    [6] 刘丹, 张丽萍, 史延茂, 尹淑丽, 崔少飞. 生防细菌对植物根围微生态效应的研究进展[J]. 中国农学通报, 2014, 30(7):260-265Liu D, Zhang LP, Shi YM, Yin SL, Cui SF. Advances on micro-ecological effects of antagonistic bacteria on rhizosphere[J]. Chinese Agricultural Science Bulletin, 2014, 30(7):260-265(in Chinese)
    [7] Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J. Biological control agents against Fusarium wilt of banana[J]. Frontiers in Microbiology, 2019, 10:616
    [8] Bubici G. Streptomyces spp. as biocontrol agents against Fusarium species[J]. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2018, 13(50):1-15
    [9] 张涵, 习慧君, 赵玉华, 万鑫茹, 张园园, 赵莹, 文才艺. 杨浦链霉菌WLU210的筛选、鉴定及其对苦瓜枯萎病的生防作用研究[J]. 中国生物防治学报, 2021, 37(5):1058-1065Zhang H, Xi HJ, Zhao YH, Wan XR, Zhang YY, Zhao Y, Wen CY. Screening, identification of Streptomyces yangpuensis WLU210 and its biocontrol effect on Fusarium wilt of Bitter Gourd[J]. Chinese Journal of Biological Control, 2021, 37(5):1058-1065(in Chinese)
    [10] Wang J, Cai B, Li K, Zhao Y, Li C, Liu S, Xiang D, Zhang L, XieJ, Wang W. Biological control of Fusarium oxysporum f. sp. Cubense tropicalrace 4 in banana plantlets using newly isolated Streptomyces sp. WHL7 from marine soft coral[J]. Plant Disease, 2022,106(1):254-259
    [11] 秦涵淳, 杨腊英, 李松伟, 谢玉萍, 黄俊生. 香蕉镰刀菌枯萎病拮抗放线菌的分离筛选及其抑制效果的初步评价[J]. 中国生物防治, 2010, 26(02):174-180Qin HC, Yang LY, Li SW, Xie YP, Huang JS. Isolation of antagonistic Actinomyces against banana Fusarium wilt disease and primary evaluation on their inhibition effects[J]. Chinese Journal of Biological Control, 2010, 26(02):174-180(in Chinese)
    [12] 周登博, 井涛, 起登凤, 冯仁军, 段雅捷, 陈宇丰, 王飞, 张锡炎, 谢江辉. 抗香蕉枯萎病菌的卢娜林瑞链霉菌的分离及防效鉴定[J]. 园艺学报, 2017, 44(4):664-674Zhou DB, Jing T, Qi DF, Feng RJ, Duan YJ, Chen YF, Wang F, Zhang XY, Xie JH. Isolation and identification of Streptomyces lunalinharesii and its control effect on the banana Fusarium wilt disease[J]. Acta HorticulturaeSinica, 2017, 44(4):664-674(in Chinese)
    [13] Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S. Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense[J]. World Journal of Microbiology and Biotechnology, 2004, 20(5):501-504
    [14] 穆燕魁, 王占武, 张翠绵, 李洪涛, 田洪涛, 贾楠. 根际益生菌链霉菌S506固体发酵条件优化[J]. 微生物学通报, 2008, 35(10):1600-1605Mu YK, Wang ZW, Zhang CM, Li HT, Tian HT, Jia N. Optimum of solid fermentation parameters for Streptomyces sp. S506[J]. Microbiology, 2008, 35(10):1600-1605(in Chinese)
    [15] Lu L, Yin S, Liu X, Zhang W, Gu T, Shen Q,Qiu H. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65:186-194
    [16] Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroe O. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Applied and Environmental Microbiology, 2012, 78(20):7438-7446
    [17] Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun:predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17):2882-2884
    [18] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1):10
    [19] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH:a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4:e2584
    [20] Haas BJ,Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3):494-504
    [21] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
    [22] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267
    [23] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1):D590-D596
    [24] Venter ZS, Jacobs K, Hawkins HJ. The impact of crop rotation on soil microbial diversity:a meta-analysis[J]. Pedobiologia, 2016, 59(4):215-223
    [25] Thangavelu R, Gopi M. Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine[J]. Biocontrol Science and Technology, 2015, 25(10):1147-1164
    [26] Thangavelu R, Gopi M. Field suppression of Fusarium wilt disease in banana by the combined application of native endophytic and rhizospheric bacterial isolates possessing multiple functions[J]. Phytopathologia Mediterranea, 2015, 54(2):241-252
    [27] 郁雪平, 朱伟杰, 高观朋, 王伟. 生防木霉菌Th2和T4对甜瓜根围土壤微生态的影响[J]. 植物保护学报, 2009, 36(6):522-528Yu XP, Zhu WJ, Gao GP, Wang W. Influences of biocontrol agents Trichoderma harzianum Th2 and T4 on microecosystem of rhizosphere soil in melon[J]. Acta Phytophylacica Sinica, 2009, 36(6):522-528(in Chinese)
    [28] Wang B, Shen Z, Zhang F, RAZA W, YUAN J, Huang R, RuanY, Li R, Shen Q. Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions[J]. Pedosphere, 2016, 26(5):733-744
    [29] Kavino M, Manoranjitham SK. In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates:novel ways to combat Fusarium wilt[J]. European Journal of Plant Pathology, 2018, 151(2):371-387
    [30] Fu L, Ruan Y, Tao C, Li R, Shen Q. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression[J]. Scientific Reports, 2016, 6:27731
    [31] 桂莎, 刘芳, 张立丹, 樊小林. 复合菌剂防控香蕉枯萎病的效果及其微生物学机制[J]. 土壤学报, 2020, 57(4):995-1007Gui S, Liu F, Zhang LD, Fan XL. Effects of complex anti-fungal agents biocontrolling Fusarium wilt on banana and its microbiological mechanism[J]. Acta Pedologica Sinica, 2020, 57(04):995-1007(in Chinese)
    [32] Nitta T. Diversity of root fungal floras:its implications for soil-borne diseases and crop growth[J]. Jarq-Japan Agricultural Research Quarterly, 1991, 25:6-11
    [33] Abawi GS, Widmer TL. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops[J]. Applied Soil Ecology, 2000, 15(1):37-47
    [34] Shen Z, RuanY, Xue C, Zhong S, Li R, Shen Q. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities[J]. Plant and Soil, 2015, 393:21-33
    [35] Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, et al. A higher-level phylogenetic classification of the fungi[J]. Mycological Research, 2007, 111(5):509-547
    [36] Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, et al. The revised classification of eukaryotes[J]. Journal of Eukaryotic Microbiology, 2012, 59(5):429-493
    [37] Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3(6):700-714
    [38] Dedysh SN, Damsté JSS. Acidobacteria[J]. eLS, 2018:1-10
    [39] Dedysh SN. Bryobacter[M]. Bergey's Manual of Systematics of Archaea and Bacteria, 2015:1-5
    [40] Huang JF, Pang YW, Zhang FB, Huang Q, Zhang M, Tang S, Fu H, Li P. Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6[J]. European Journal of Plant Pathology, 2019, 154(3):585-596
    [41] 桂莎, 刘芳, 樊小林. 碱性肥料和生防菌制剂配合施用对香蕉枯萎病的防效[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11):104-113Gui S, Liu F, Fan XL. Preventing effects of combined application of alkaline fertilizer and biocontrol actinomyces agent on banana Fusarium wilt[J]. Journal of Northwest A&F University:Natural Science Edition, 2019, 47(11):104-113(in Chinese)
    [42] Mendes LW, DeLimaBrossi MJ, Kuramae EE, Tsai SM. Land-use system shapes soil bacterial communities in southeastern Amazon region[J]. Applied Soil Ecology, 2015, 95:151-160
    [43] Li WX, Zhang YP, Mao W, Wang C, Yin S. Functional potential differences between Firmicutes and Proteobacteria in response to manure amendment in a reclaimed soil[J]. Canadian Journal of Microbiology, 2020, 66(12):689-697
    [44] Rodrigues JLM, Pellizari VH, Mueller R, Baek K, da C Jesus E, Paula FS, Mirza B, Hamaoui GS Jr, Tsai SM, Feigl B, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J]. PNAS, 2013, 110(3):988-993
    [45] Battistuzzi FU, Hedges SB. A major clade of prokaryotes with ancient adaptations to life on land[J]. Molecular Biology and Evolution, 2009, 26(2):335-343
    [46] Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the malanjkhand copper project, India[J]. Frontiers in Microbiology, 2018, 9:2882
    [47] Huang Z, Liu B, Yin Y, Liang F, XieD, Han T, Liu Y, Yan B, Li Q, Huang Y, et al. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe)[J]. Pest Management Science, 2021,77(12):5537-5546
    [48] Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1):86
    [49] XieF, Zhang G, Zheng Q, Liu K, Yin X, Sun X, Saud S, Shi Z, Yuan R, Deng W, et al. Beneficial effects of mixing Kentucky bluegrass with red fescue via plant-soil interactions in black soil of northeast China[J]. Frontiers in Microbiology, 2020, 11:556118
    [50] Hu HY, Li H, Hao MM, Ren YN, Zhang MK, Liu RY, Zhang Y, Li G, Chen JS, Ning TY, et al. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J]. Journal of Applied Ecology, 2021,58(10):2243-2255
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄穗萍,李其利,韦绍龙,唐利华,陈小林,黄素梅,郭堂勋. 米修链霉菌TF78对香蕉枯萎病的田间防效及根际土壤微生物的影响[J]. 微生物学通报, 2022, 49(9): 3693-3708

复制
分享
文章指标
  • 点击次数:315
  • 下载次数: 1158
  • HTML阅读次数: 744
  • 引用次数: 0
历史
  • 收稿日期:2022-01-24
  • 最后修改日期:2022-03-15
  • 在线发布日期: 2022-08-30
  • 出版日期: 2022-09-20
文章二维码