科微学术

微生物学通报

鼠李糖乳杆菌碱性磷酸酶的提取条件优化及其降解有机磷农药作用
作者:
基金项目:

内蒙古自治区科技计划重大专项(2020CG0012);内蒙古自治区高等学校科学研究项目(NJZY19054);内蒙古农业大学教育教学改革研究重点项目(JGZD201813)


Optimization of the extraction of alkaline phosphatase from Lactobacillus rhamnosus and the mechanism underlying the degradation of organophosphorus pesticides
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】我国作为农业大国,对农药的大量使用是不可避免的,但是农药的超范围使用、超标及高检出率对于环境的污染与人体健康的威胁日趋严重。【目的】碱性磷酸酶(alkaline phosphatase,ALP)对有机磷农药具有积极的降解作用,因此,本文对鼠李糖乳杆菌(Lactobacillus rhamnosus) Z23(LGG Z23)所产碱性磷酸酶的提取条件进行优化,并研究其对有机磷农药的降解作用。【方法】使用单因素试验和正交试验优化ALP的提取条件;使用对硝基苯酚法测定酶活力;使用分级沉淀和层析法提纯ALP;使用乙酰胆碱酯酶抑制法测定ALP对有机磷农药的降解率。【结果】LGG Z23所产ALP的最优提取条件为:细胞破碎时间15 min,破碎功率450 W,料液比(质量体积比)1:6,提取液pH 10.0,此条件下酶活力为(4.95±0.26) U/mL,比优化前提高2.11倍;对6种有机磷农药的降解率效果为敌敌畏(95.79%±0.01%)>甲基对硫磷(90.69%±0.03%)>毒死蜱(88.90%±0.02%)>敌百虫(86.07%±0.03%)>马拉硫磷(85.31%±0.02%)>乐果(83.18%±0.03%),其中对敌敌畏和甲基对硫磷的降解效果最好,可达90%以上,并且降解作用差异显著(P<0.05)。【结论】本研究为LGG Z23所产ALP的应用研究提供了理论依据和实验数据。

    Abstract:

    [Background] China, one of the world's largest agricultural economy, has seen the large-scale use of pesticides. However, the overuse of pesticides, which has led to high detection rate, has threatened the environment and human health.[Objective] Alkaline phosphatase (ALP) can degrade organophosphorus pesticides. Therefore, we optimized the extraction of ALP from Lactobacillus rhamnosus Z23 (LGG Z23) and explored the mechanism underlying the degradation of organophosphorus pesticides. [Methods] Single factor test and orthogonal test were used to optimize the extraction. The enzyme activity was determined by detecting the amount of p-nitrophenol released. Fractional precipitation and chromatography were employed for the purification of ALP. The degradation rate of organophosphorus pesticides was determined based on the inhibition of acetylcholinesterase. [Results] The optimum conditions for extracting ALP from LGG Z23 were as follows:disruption of cells for 15 min at 450 W, material-liquid ratio (mass to volume ratio) of 1:6, and pH 10.0. Under the conditions, the activity of ALP was (4.95±0.26) U/mL, 2.11 times higher than that before optimization. The degradation rate of 6 organophosphorus pesticides was in the order of DDVP (95.79%±0.01%)>methyl parathion (90.69%±0.03%)>chlorpyrifos (88.90%±0.02%)>trichlorfon (86.07%±0.03%)>malathion (85.31%±0.02%)>dimethoate (83.18%±0.03%). Among them, the activity of degrading DDVP and methyl parathion was the highest (over 90%), and the difference was significant (P<0.05). [Conclusion] The result lays a theoretical basis and provides data for the application of ALP from LGG Z23.

    参考文献
    [1] 金于涛. UV/Fenton试剂处理有机磷农药废水实验研究[D]. 西安:西安科技大学硕士学位论文, 2010 Jin YT. UV/Fenton reagent procearing ganophosphorus agrlecultral chemicals wastewater experlm ental study[D]. Xi'an:Master's Thesis of Xi'an University of Science and Technology, 2010(in Chinese)
    [2] 黄东, 谢春生, 操江飞, 韦寿莲. 分散固相萃取-气相色谱法测定蔬菜中7种有机磷农药残留[J]. 化学工程师, 2021, 35(11):23-27 Huang D, Xie CS, Cao JF, Wei SL. Determination of 7 organophosphorus pesticide residues in vegetables by SPE-GC[J]. Chemical Engineer, 2021, 35(11):23-27(in Chinese)
    [3] Xin LJ. Chemical fertilizer rate, use efficiency and reduction of cereal crops in China, 1998-2018[J]. Journal of Geographical Sciences, 2022, 32(1):65-78
    [4] 焦美娟, 林文星, 马鹏生, 王芳, 何娜, 吴秀丽. 农药残留生物降解剂的研究进展[J]. 北方园艺, 2021(13):141-147 Jiao MJ, Lin WX, Ma PS, Wang F, He N, Wu XL. Research progress of pesticide residue biodegradation agents[J]. Northern Horticulture, 2021(13):141-147(in Chinese)
    [5] Yang KJ, Lee J, Park HL. Organophosphate pesticide exposure and breast cancer risk:a rapid review of human, animal, and cell-based studies[J]. International Journal of Environmental Research and Public Health, 2020, 17(14):5030
    [6] Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes:a potential unifying mechanism in fatty liver disease[J]. Acta Pharmaceutica Sinica B, 2021, 11(12):3756-3767
    [7] 孟迪. Bacillus amyloliquefaciens YP6在降解有机磷农药中的作用及机理[D]. 无锡:江南大学博士学位论文, 2020 Meng D. The role and mechanism of Bacillus amyloliquefaciens YP6 in the degradation of organophosphorus pesticides[D]. Wuxi:Doctoral Dissertation of Jiangnan University, 2020
    [8] Boedeker W, Watts M, Clausing P, Marquez E. The global distribution of acute unintentional pesticide poisoning:estimations based on a systematic review[J]. BMC Public Health, 2020, 20:1875
    [9] 何小玲, 聂艳, 王念, 夏华南, 刘嘉宇, 卢雨萱, 贺美. 有机磷农药污染现状与防治对策[J]. 环境生态学, 2021, 3(10):38-43 He XL, Nie Y, Wang N, Xia HN, Liu JY, Lu YX, He M. The Current situation of organophosphorus pesticides pollution and its countermeasures[J]. Environmental Ecology, 2021, 3(10):38-43(in Chinese)
    [10] Deng JC, Li XM, Xiao XL, Wu HJ, Yang CQ, Long XY, Zhang QH, IQBAL N, Wang XC, Yong TW, et al. Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field[J]. Journal of Integrative Agriculture, 2022, 21(2):336-350
    [11] 刘一帆. 有机磷农药的微生物降解技术[J]. 化工管理, 2021(26):37-38 Liu YF. The microbial degradation technology of the organophosphorus pesticide[J]. Chemical Enterprise Management, 2021(26):37-38(in Chinese)
    [12] 尹芳, 张无敌, 周肸, 张振, 周双双, 赵兴玲, 王昌梅, 柳静, 毛羽, 杨红, 等. 新型生物农药残留降解剂研发及其潜在前景展望[J]. 灾害学, 2016, 31(3):157-159, 169 Yin F, Zhang WD, Zhou X, Zhang Z, Zhou SS, Zhao XL, Wang CM, Liu J, Mao Y, Yang H, et al. Experiment research and market prospect of new pesticide degradation agent[J]. Journal of Catastrophology, 2016, 31(3):157-159, 169(in Chinese)
    [13] Cheng WL, Zeng L, Yang X, Huang D, Yu H, Chen W, Cai MM, Zheng LY, Yu ZN, Zhang JB. Preparation and efficacy evaluation of Paenibacillus polymyxa KM2501-1 microbial organic fertilizer against root-knot nematodes[J]. Journal of Integrative Agriculture, 2022, 21(2):542-551
    [14] Kaur P, Singh K, Singh B. Microplastics in soil:impacts and microbial diversity and degradation[J]. Pedosphere, 2022, 32(1):49-60
    [15] Misnal MFI, Redzuan N, Zainal MNF, Ahmad N, Raja Ibrahim RK, Agun LD. Cold plasma:a potential alternative for rice grain postharvest treatment management in Malaysia[J]. Rice Science, 2022, 29(1):1-15
    [16] Sehrawat A, Sindhu SS, Glick BR. Hydrogen cyanide production by soil bacteria:biological control of pests and promotion of plant growth in sustainable agriculture[J]. Pedosphere, 2022, 32(1):15-38
    [17] Mitra D, Mondal R, Khoshru B, Senapati A, Radha TK, Mahakur B, Uniyal N, Myo EM, Boutaj H, Sierra BEG, et al. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection:Advances in soil, plant, and microbial multifactorial interactions[J]. Pedosphere, 2022, 32(1):149-170
    [18] Mohammed DYH. Isolation and characterization of rhizosphere bacteria capable to activate phosphorus in the alkaline soil[D]. Yangzhou:Master's Thesis of Yangzhou University, 2016
    [19] Chen JX, Song BA. Natural nematicidal active compounds:recent research progress and outlook[J]. Journal of Integrative Agriculture, 2021, 20(8):2015-2031
    [20] 丁小星. 碱性磷酸酶与PIK3R1在宫颈癌临床应用中的价值评估[D]. 镇江:江苏大学硕士学位论文, 2018 Ding XX. Evaluation of the value of alkaline phosphatase and PIK3R1 in the clinical application of cervical cancer[D]. Zhenjiang:Master's Thesis of Jiangsu University, 2018(in Chinese)
    [21] Goldberg RF, Austen WG Jr, Zhang XB, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition[J]. PNAS, 2008, 105(9):3551-3556
    [22] Horiuchi T, Horiuchi S, Mizuno D. A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli[J]. Nature, 1959, 183(4674):1529-1530
    [23] Zappa S, Rolland JL, Flament D, Gueguen Y, Boudrant J, Dietrich J. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi[J]. Applied and Environmental Microbiology, 2001, 67(10):4504-4511
    [24] Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures:two-metal ion catalysis[J]. Journal of Molecular Biology, 1991, 218(2):449-464
    [25] 高明春, 李雪萌, 张润祥, 王君伟. 大肠杆菌菌株ATCC 25922碱性磷酸酶的原核表达、纯化及其活性研究[J]. 东北农业大学学报, 2010, 41(8):48-53 Gao MC, Li XM, Zhang RX, Wang JW. Study on prokaryotic expression, purification and enzymatic activity of alkaline phosphatase from Escherichia coli ATCC 25922[J]. Journal of Northeast Agricultural University, 2010, 41(8):48-53(in Chinese)
    [26] 段晓霞, 格日乐其木格, 其其日力格, 邱崇顺, 芒来, 乌云达来. 产碱性磷酸酶乳杆菌的筛选鉴定、酶的纯化及特性[J]. 微生物学通报, 2020, 47(6):1817-1827 Duan XX, Gerelchimeg, Qiqirilige, Qiu CS, Manglai, Wuyundalai. Screening, identification, purification and characterization of alkaline phosphatase from Lactobacillus[J]. Microbiology China, 2020, 47(6):1817-1827(in Chinese)
    [27] 段晓霞. 产碱性磷酸酶乳杆菌的筛选、酶学性质及降解有机磷作用研究[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2020 Duan XX. Study on screening, enzymatic properties and degradation of organophosphorus by Lactobacillus alkaline phosphatase[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2020(in Chinese)
    [28] Yu YX, Zhang Z, Wang YG, Liao MJ, Rong XJ, Li B, Zhang H. Effects of different preservation methods on physicochemical property of marine pathogen Vibrio anguillarum[J]. Journal of Ocean University of China, 2019, 18(6):1417-1426
    [29] Noohi N, Papizadeh M, Rohani M, Talebi M, Pourshafie MR. Screening for probiotic characters in lactobacilli isolated from chickens revealed the intra-species diversity of Lactobacillus brevis[J]. Animal Nutrition, 2021, 7(1):119-126
    [30] 安璟. 乳酸菌胁迫反应的影响因素及其耐热性的研究[D]. 武汉:华中农业大学硕士学位论文, 2019 An J. Study on the factors affecting the stress reaction of lactic acid bacteria and its thermotolerance[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2019(in Chinese)
    [31] Madebo MP, Luo SM, Wang L, Zheng YH, Jin P. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit[J]. Journal of Integrative Agriculture, 2021, 20(11):3060-3074
    [32] 王薇, 邵百琪, 徐伟, 张雪, 曹雯, 吴凡, 谢红瑶. 阿氏芽孢杆菌(Bacillus aryabhattai)分离鉴定及其对蔬菜中甲萘威农药降解作用的研究[J]. 食品安全质量检测学报, 2021, 12(24):9452-9460 Wang W, Shao BQ, Xu W, Zhang X, Cao W, Wu F, Xie HY. Isolation and identification of Bacillus aryabhattai and its degradation of carbaryl pesticide in vegetables[J]. Journal of Food Safety & Quality, 2021, 12(24):9452-9460(in Chinese)
    [33] 高熳熳, 白俊岩, 孙磊, 程书梅, 霍书英. 有机磷水解酶对不同有机磷农药降解功效的评价[J]. 江苏农业科学, 2019, 47(8):217-220 Gao MM, Bai JY, Sun L, Cheng SM, Huo SY. Evaluation of degradation efficiency of different organophosphorus pesticides by organophosphorus hydrolase[J]. Jiangsu Agricultural Sciences, 2019, 47(8):217-220(in Chinese)
    [34] 钟树明, 袁东星, 金晓英, 许鹏翔. 植物酶抑制技术用于检测蔬菜中有机磷及氨基甲酸酯类农药残留[J]. 环境化学, 2002, 21(2):189-193 Zhong SM, Yuan DX, Jin XY, Xu PX. Determination of organophosphorus and carbamate pesticide residues in vegetables using a plant-hydrolyses inhibition technique[J]. Environmental Chemistry, 2002, 21(2):189-193(in Chinese)
    [35] 赵妍. 拟除虫菊酯类农药残留快速检测方法的建立[D]. 上海:上海交通大学硕士学位论文, 2020 Zhao Y. Development of a method for the rapid determination of pyrethroids[D]. Shanghai:Master's Thesis of Shanghai Jiao Tong University, 2020(in Chinese)
    [36] 解顺昌. 有机磷农药降解菌的分离鉴定及其产酶特性研究[D]. 厦门:集美大学硕士学位论文, 2011 Xie SC. Isolation, characterization and PM degrading enzyme production of organophosphorus pesticide degrading fungi[D]. Xiamen:Master's Thesis of Jimei University, 2011(in Chinese)
    [37] 郭宇星, 潘道东. 超声波破碎法提取瑞士乳杆菌氨肽酶条件的优化[J]. 食品科学, 2008, 29(8):140-144 Guo YX, Pan DD. Optimization of ultrasonic extraction conditions of aminopeptidase from Lactobacillus helveticus[J]. Food Science, 2008, 29(8):140-144(in Chinese)
    [38] 林勤, 徐文雅, 董斌, 陈艳芬, 赵越. 响应面法优化类球红细菌中辅酶Q10超声提取工艺[J]. 广东药学院学报, 2016, 32(4):420-424 Lin Q, Xu WY, Dong B, Chen YF, Zhao Y. Optimization of extraction conditions for coenzyme Q10 from Rhodobacter sphaeroides by surface response methodology[J]. Journal of Guangdong Pharmaceutical University, 2016, 32(4):420-424(in Chinese)
    [39] 黄忠, 汤庆莉, 吴天祥, 朱思洁, 杨祖滔. 超声波提取灰树花菌丝体蛋白工艺优化[J]. 中国酿造, 2016, 35(7):151-154 Huang Z, Tang QL, Wu TX, Zhu SJ, Yang ZT. Optimization of extraction technology of protein from Grifola frondosa mycelium by ultrasonic wave[J]. China Brewing, 2016, 35(7):151-154(in Chinese)
    [40] 解秀平, 闫艳春, 刘萍萍, 王圣惠. 降解甲基对硫磷的节杆菌(Arthrobacter sp.)L4菌株的分离和降解特性研究[J]. 环境科学学报, 2006, 26(10):1637-1642 Xie XP, Yan YC, Liu PP, Wang SH. Isolation, degradation and characterization of methylparathion degradative strain L4[J]. Acta Scientiae Circumstantiae, 2006, 26(10):1637-1642(in Chinese)
    [41] 江玉姬, 邓优锦, 刘新锐, 谢宝贵, 胡方平, 辛伟. 一株能高效降解几种有机磷农药的菌株JS018的鉴定[J]. 微生物学报, 2006, 46(3):467-470 Jiang YJ, Deng YJ Liu XR, Xie BG, Hu FP, Xin W. Isolation and identification of a bacterial strain JS018 capable of degrading several kinds of organophosphate pesticides[J]. Acta Microbiologica Sinica, 2006, 46(3):467-470(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

塔娜,段晓霞,何宇星,刘玮,梁程媛,张恩馨,乌云达来. 鼠李糖乳杆菌碱性磷酸酶的提取条件优化及其降解有机磷农药作用[J]. 微生物学通报, 2022, 49(9): 3671-3681

复制
分享
文章指标
  • 点击次数:308
  • 下载次数: 846
  • HTML阅读次数: 1034
  • 引用次数: 0
历史
  • 收稿日期:2022-01-19
  • 最后修改日期:2022-04-05
  • 在线发布日期: 2022-08-30
  • 出版日期: 2022-09-20
文章二维码