科微学术

微生物学通报

洮河上游不同海拔紫果云杉根际与非根际土壤细菌多样性及影响因子
作者:
基金项目:

甘肃省林业和草原局科技创新项目(KJCX202001,KJCX202202)


Diversity and influencing factors of bacteria in rhizosphere and non-rhizosphere soil of Picea purpurea at different altitudes in the upstream of Taohe river
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】紫果云杉天然林在维护洮河上游生态环境安全方面发挥着重要作用,不同海拔梯度如何影响紫果云杉根际与非根际细菌多样性、土壤养分因子及三者之间的相关性尚不清楚。【目的】深入探索紫果云杉根际与非根际土壤细菌群落结构组成及受控因子。【方法】采用Illumina Miseq平台对洮河上游不同海拔紫果云杉天然林根际与非根际土壤细菌进行测序分析,分析土壤理化因子与细菌多样性随海拔的变化趋势,并通过相关性与冗余分析探究环境因子对细菌群落的影响。【结果】土壤养分因子随海拔升高呈先增加后降低趋势;根际土养分因子组间差异显著(P<0.05),非根际组间差异不显著(P>0.05)。随海拔升高根际微生物物种多样性指数(H)、均匀度指数(E)、丰富度指数(Chao1/ACE)和OTU数目呈单峰型变化趋势;非根际多样性指数随海拔升高呈双峰型变化趋势。土壤细菌多样性与养分因子密切相关,其中有机质、全氮和碱解氮呈显著正相关(P<0.05),而土壤pH和有效磷与细菌多样性呈负相关但不显著(P>0.05)。不同海拔梯度下紫果云杉天然林细菌群落结构一致性较高,从30个样本中获得7 159个细菌OTU,注释到37个门;细菌优势类群为放线菌门、变形菌门、酸杆菌门和绿弯菌门。不同细菌门对土壤养分因子的响应各不相同,有机质、全氮和碱解氮与变形菌门呈显著正相关(P<0.05)。【结论】土壤理化因子能够显著影响紫果云杉根际与非根际细菌多样性和组成,海拔和水热条件等环境因子对植物和土壤的驱动影响是细菌群落结构稳定组成的重要原因。本研究有助于深入理解紫果云杉天然林土壤细菌多样性的变化和驱动机制,为洮河上游天然林恢复与生态恢复提供借鉴。

    Abstract:

    [Background] The natural forest dominated by Picea purpurea plays an important role in maintaining ecological security in the upstream of Taohe river. It is still unclear how altitude influences the bacterial diversity and nutrients in rhizosphere and non-rhizosphere soil of P. purpurea, and how the altitude, soil nutrients, and bacterial diversity interact with each other. [Objective] To explore the community structures of bacteria in rhizosphere and non-rhizosphere soil of P. purpurea and the influencing factors.[Methods] Illumina Miseq was employed for sequence analysis of the rhizosphere and non-rhizosphere bacteria in the natural P. purpurea forest at different elevations in the upper reaches of Taohe river. The changes of soil physical and chemical factors and bacterial diversity with altitude were analyzed. Correlation and redundancy analysis was performed to elucidate the effect of some environmental factors on bacterial community. [Results] The nutrients of rhizosphere and non-rhizosphere soil samples of P. purpurea increased first and then decreased with the rise of altitude. The intergroup difference was significant for rhizosphere soil nutrients (P<0.05) but insignificant for non-rhizosphere soil nutrients (P>0.05). The rhizosphere species diversity index (H), evenness index (E), richness index (Chao1/ACE), and number of operational taxonomic units (OTU) demonstrated a unimodal trend with the increase in altitude. The non-rhizosphere bacteria diversity showed a bimodal variation trend with the rise of elevation. Bacteria diversity was in close correlation with soil nutrients, particularly in positive correlation with organic matter, total nitrogen, and available nitrogen (P<0.05) but in negative correlation with pH and available phosphorus (P>0.05). The community structures of bacteria in the forest at different elevations were highly consistent. A total of 7 159 bacterial OTUs were identified from 30 samples, which belonged to 37 phyla. The dominant bacteria phyla were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, respectively. The response of different bacteria phyla to soil nutrients was different, and organic matter, total nitrogen, and available nitrogen were in positive correlation with Proteobacteria (P<0.05). [Conclusion] Composition and diversity of rhizosphere and non-rhizosphere soil bacteria of P. purpurea are significantly influenced by soil physical and chemical factors. The driving effects of environmental factors such as altitude and hydrothermal conditions on plants and soil are important reasons for the stable bacterial community structure. This study is expected to help gain a clearer insight into the variation of soil bacteria diversity of P. purpurea and the driving mechanism, which is expected to provide a reference for natural forest restoration in the upstream of Taohe river.

    参考文献
    [1] 赵兴鸽, 张世挺, 牛克昌. 高寒草甸植物群落功能属性与土壤细菌多样性关系[J]. 中国科学:生命科学, 2020, 50(1):70-80Zhao XG, Zhang ST, Niu KC. Association of soil bacterial diversity with plant community functional attributes in alpine meadows[J]. Scientia Sinica:Vitae, 2020, 50(1):70-80(in Chinese)
    [2] 张丹丹, 张丽梅, 沈菊培, 旺姆. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 2018, 38(7):2247-2261Zhang DD, Zhang LM, Shen JP, Wangmu. Soil bacterial and fungal community succession along an altitude gradient on Mount Everest[J]. Acta Ecologica Sinica, 2018, 38(7):2247-2261(in Chinese)
    [3] Tian T, Reverdy A, She QX, Sun BB, Chai YR. The role of rhizodeposits in shaping rhizomicrobiome[J]. Environmental Microbiology Reports, 2020, 12(2):160-172
    [4] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2):231-248Liu JW, Li XZ, Yao MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2):231-248(in Chinese)
    [5] 熊悯梓, 钞亚鹏, 赵盼, 宋双伟, 石莹莹, 莫乘宝, 仲乃琴. 不同生境马铃薯根际土壤细菌多样性分析[J]. 微生物学报, 2020, 60(11):2434-2449Xiong MZ, Chao YP, Zhao P, Song SW, Shi YY, Mo CB, Zhong NQ. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats[J]. Acta Microbiologica Sinica, 2020, 60(11):2434-2449(in Chinese)
    [6] Guo YX, Ren CJ, Yi JJ, Doughty R, Zhao FZ. Contrasting responses of rhizosphere bacteria, fungi and arbuscular mycorrhizal fungi along an elevational gradient in a temperate montane forest of China[J]. Frontiers in Microbiology, 2020, 11:2042
    [7] 张荣, 李婷婷, 金锁, 鱼舜尧, 王宇, 李禹江, 齐锦秋, 郝建锋. 不同海拔高度对周公山柳杉人工林植物多样性及土壤养分的影响[J]. 中南林业科技大学学报, 2020, 40(5):38-46Zhang R, Li TT, Jin S, Yu SY, Wang Y, Li YJ, Qi JQ, Hao JF. Effects of different altitude on plant diversity and soil nutrients of Cryptomeria fortunei plantation in Zhougong Mountain[J]. Journal of Central South University of Forestry & Technology, 2020, 40(5):38-46(in Chinese)
    [8] Adam S, Azatyan A, Soares MIM, Gillor O. The impact of hydration and temperature on bacterial diversity in arid soil mesocosms[J]. Frontiers in Microbiology, 2017, 8:1078
    [9] 邱书志, 王伟, 丁骞, 杨永林, 汪淑筠, 王少明, 闫毓斌, 赵亮生. 洮河林区森林生态系统服务功能及价值评估[J]. 中南林业科技大学学报, 2018, 38(2):97-102Qiu SZ, Wang W, Ding Q, Yang YL, Wang SJ, Wang SM, Yan YB, Zhao LS. Forest ecosystem service function and value evaluation in Taohe forest area[J]. Journal of Central South University of Forestry & Technology, 2018, 38(2):97-102(in Chinese)
    [10] 王婧如, 王明浩, 张晓玮, 孙杉, 赵长明. 同倍体杂交物种紫果云杉的生态位分化及其未来潜在分布区预测[J]. 林业科学, 2018, 54(6):63-72Wang JR, Wang MH, Zhang XW, Sun S, Zhao CM. The ecological divergence and projection of future potential distribution of homoploid hybrid species Picea purpurea[J]. Scientia Silvae Sinicae, 2018, 54(6):63-72(in Chinese)
    [11] 赵阳, 刘锦乾, 陈学龙, 杨萌萌, 曹家豪, 齐瑞, 曹秀文. 洮河上游紫果云杉种群结构特征[J]. 植物生态学报, 2020, 44(3):266-276Zhao Y, Liu JQ, Chen XL, Yang MM, Cao JH, Qi R, Cao XW. Population structure characteristics of Picea purpurea in the upstream of Taohe River[J]. Chinese Journal of Plant Ecology, 2020, 44(3):266-276(in Chinese)
    [12] 罗建勋, 赵福培, 刘邵谋, 辜云杰, 孙志鹏, 贾晨. 紫果云杉天然种群种实性状表型多样性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(9):77-84Luo JX, Zhao FP, Liu SM, Gu YJ, Sun ZP, Jia C. Phenotypic diversity of seeds and fruits characteristics in natural population of Picea purpurea[J]. Journal of Northwest A & F University:Natural Science Edition, 2021, 49(9):77-84(in Chinese)
    [13] 罗明霞, 胡宗达, 刘兴良, 李亚非, 胡璟, 欧定华, 吴德勇. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性[J]. 生态学报, 2021, 41(14):5632-5642Luo MX, Hu ZD, Liu XL, Li YF, Hu J, Ou DH, Wu DY. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China[J]. Acta Ecologica Sinica, 2021, 41(14):5632-5642(in Chinese)
    [14] 刘艳娇, 樊丹丹, 李香真, 赵文强, 寇涌苹. 人工与天然云杉林土壤真菌群落多样性及菌群网络关系特征[J]. 应用生态学报, 2021, 32(4):1441-1451Liu YJ, Fan DD, Li XZ, Zhao WQ, Kou YP. Diversity and network features of fungal community in the soils of planted and natural Picea asperata forests[J]. Chinese Journal of Applied Ecology, 2021, 32(4):1441-1451(in Chinese)
    [15] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:Chinese Agriculture Press, 2000(in Chinese)
    [16] Chen SF, Zhou YQ, Chen YR, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics:Oxford, England, 2018, 34(17):i884-i890
    [17] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics:Oxford, England, 2011, 27(21):2957-2963
    [18] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
    [19] Zhang C, Liu GB, Xue S, Wang GL. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 2016, 97:40-49
    [20] Hahl T, van Moorsel SJ, Schmid MW, Zuppinger-Dingley D, Schmid B, Wagg C. Plant responses to diversity-driven selection and associated rhizosphere microbial communities[J]. Functional Ecology, 2020, 34(3):707-722
    [21] 董廷发. 不同海拔云南松林土壤养分及其生态化学计量特征[J]. 生态学杂志, 2021, 40(3):672-679Dong TF. Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient[J]. Chinese Journal of Ecology, 2021, 40(3):672-679(in Chinese)
    [22] 周子渊, 于明含, 丁国栋, 高广磊, 何莹莹. 毛乌素沙地锦鸡儿(Caragana)根系微域细菌群落多样性特征[J]. 中国沙漠, 2020, 40(4):128-137Zhou ZY, Yu MH, Ding GD, Gao GL, He YY. Diversity of bacterial communities in the rhizocompartments of Caragana in the Mu Us Desert[J]. Journal of Desert Research, 2020, 40(4):128-137(in Chinese)
    [23] 胡宗达, 刘世荣, 史作民, 刘兴良, 何飞. 不同海拔梯度川滇高山栎林土壤颗粒组成及养分含量[J]. 林业科学, 2012, 48(3):1-6Hu ZD, Liu SR, Shi ZM, Liu XL, He F. Soil particle composition and its relationship with nutrient contents in a Quercus aquifolioides forest at different altitudinal gradient[J]. Scientia Silvae Sinicae, 2012, 48(3):1-6(in Chinese)
    [24] Yuan J, Zhao J, Wen T, Zhao ML, Li R, Goossens P, Huang QW, Bai Y, Vivanco JM, Kowalchuk GA, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1):156
    [25] 杨林, 陈亚梅, 和润莲, 邓长春, 刘军伟, 刘洋. 高山森林土壤微生物群落结构和功能对模拟增温的响应[J]. 应用生态学报, 2016, 27(9):2855-2863Yang L, Chen YM, He RL, Deng CC, Liu JW, Liu Y. Responses of soil microbial community structure and function to simulated warming in alpine forest[J]. Chinese Journal of Applied Ecology, 2016, 27(9):2855-2863(in Chinese)
    [26] 杨山, 李小彬, 王汝振, 蔡江平, 徐柱文, 张玉革, 李慧, 姜勇. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(3):739-746Yang S, Li XB, Wang RZ, Cai JP, Xu ZW, Zhang YG, Li H, Jiang Y. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3):739-746(in Chinese)
    [27] 杨睿, 李娟, 龙健, 廖洪凯, 王显, 李宜蓉. 贵州喀斯特山区不同种植年限花椒根际土壤细菌群落结构特征研究[J]. 生态环境学报, 2021, 30(1):81-91Yang R, Li J, Long J, Liao HK, Wang X, Li YR. Structural characteristics of bacterial community in rhizosphere soil of Zanthoxylum bungeamun in different planting years in karst areas of Guizhou[J]. Ecology and Environmental Sciences, 2021, 30(1):81-91(in Chinese)
    [28] 郭辉, 唐卫平. 不同林龄华北落叶松根际与非根际土壤酶和土壤微生物研究[J]. 生态环境学报, 2020, 29(11):2163-2170Guo H, Tang WP. Enzyme activity and microbial community diversity in rhizosphere and non-rhizosphere soil of Larix principis-rupprechtii[J]. Ecology and Environmental Sciences, 2020, 29(11):2163-2170(in Chinese)
    [29] Zheng Q, Hu YT, Zhang SS, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J]. Soil Biology and Biochemistry, 2019, 136:107521
    [30] Li Z, Zu C, Wang C, Yang J, Yu H, Wu H. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture[J]. Scientific Reports, 2016, 6:35825
    [31] Stewart CE, Roosendaal D, Denef K, Pruessner E, Comas LH, Sarath G, Jin VL, Schmer MR, Soundararajan M. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought[J]. Soil Biology and Biochemistry, 2017, 112:191-203
    [32] Zhang RF, Vivanco JM, Shen QR. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37:8-14
    [33] Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:a review[J]. Plant and Soil, 2018, 427(1/2):5-16
    [34] 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2):14-20Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB. Research progress of acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016, 32(2):14-20(in Chinese)
    [35] Hartmann A, Schmid M, van Tuinen D, Berg G. Plant-driven selection of microbes[J]. Plant and Soil, 2009, 321(1/2):235-257
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高本强,齐瑞,赵阳,刘婷,李波,陈学龙,赵艳丽,曹家豪. 洮河上游不同海拔紫果云杉根际与非根际土壤细菌多样性及影响因子[J]. 微生物学通报, 2022, 49(9): 3604-3616

复制
相关视频

分享
文章指标
  • 点击次数:424
  • 下载次数: 1036
  • HTML阅读次数: 658
  • 引用次数: 0
历史
  • 收稿日期:2022-01-20
  • 最后修改日期:2022-03-13
  • 在线发布日期: 2022-08-30
  • 出版日期: 2022-09-20
文章二维码