科微学术

微生物学通报

肠道病毒D68受体研究进展
作者:
基金项目:

国家自然科学基金(81772183,31800150)


Enterovirus D68 receptors:a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道病毒D68型属于小核糖核酸病毒科,近年来在全球范围内呈规律性流行趋势,已成为严重危害公共卫生安全的问题。然而目前尚缺乏针对肠道病毒D68的特效疫苗和药物,对肠道病毒D68的分子致病机理研究仍在不断深入。本文主要对肠道病毒D68病毒受体相关研究进展进行综述,为靶向性抗病毒药物研究提供参考。

    Abstract:

    Enterovirus D68 (EV-D68), a member of Picornaviridae, has emerged over the recent years, with large outbreaks worldwide. However, no specific vaccines and drugs against EV-D68 are available. Accumulating studies are extending our understanding on the pathogenesis of EV-D68. In this review, we summarized the research on EV-D68 receptors, hoping to provide a reference for the development of targeted antiviral drugs.

    参考文献
    [1] Sun J, Hu XY, Yu XF. Current understanding of human Enterovirus D68[J]. Viruses, 2019, 11(6): 490
    [2] Greninger AL, Naccache SN, Messacar K, Clayton A, Yu GX, Somasekar S, Federman S, Stryke D, Anderson C, Yagi S, et al. A novel outbreak Enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012-14): a retrospective cohort study[J]. The Lancet Infectious Diseases, 2015, 15(6): 671-682
    [3] Liu Y, Sheng J, Fokine A, Meng G, Shin WH, Long F, Kuhn RJ, Kihara D, Rossmann MG. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children[J]. Science, 2015, 347(6217): 71-74
    [4] Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, et al. Structure of a human common cold virus and functional relationship to other Picornaviruses[J]. Nature, 1985, 317(6033): 145-153
    [5] Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones EY, Fry EE, Ren J, et al. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of coxsackie virus A10[J]. Nature Communications, 2020, 11: 38
    [6] Rossmann MG. The canyon hypothesis: hiding the host cell receptor attachment site on a viral surface from immune surveillance[J]. Journal of Biological Chemistry, 1989, 264(25): 14587-14590
    [7] Marsh M, Helenius A. Virus entry: open sesame[J]. Cell, 2006, 124(4): 729-740
    [8] Brown DM, Hixon AM, Oldfield LM, Zhang Y, Novotny M, Wang W, Das SR, Shabman RS, Tyler KL, Scheuermann RH. Contemporary circulating Enterovirus D68 strains have acquired the capacity for viral entry and replication in human neuronal cells[J]. mBio, 2018, 9(5): e01954-e01918
    [9] Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E. Complex dynamic development of Poliovirus membranous replication complexes[J]. Journal of Virology, 2012, 86(1): 302-312
    [10] Limpens RWAL, Van Der Schaar HM, Kumar D, Koster AJ, Snijder EJ, Van Kuppeveld FJM, Bárcena M. The transformation of Enterovirus replication structures: a three-dimensional study of single- and double- membrane compartments[J]. mBio, 2011, 2(5): e00166-e00111
    [11] Laufman O, Perrino J, Andino R. Viral generated inter-organelle contacts redirect lipid flux for genome replication[J]. Cell, 2019, 178(2): 275-289
    [12] Goodfellow I. The genome-linked protein VPg of vertebrate viruses—a multifaceted protein[J]. Current Opinion in Virology, 2011, 1(5): 355-362
    [13] Dai WL, Zhang C, Zhang XY, Xiong P, Liu QW, Gong ST, Geng LL, Zhou DM, Huang Z. A virus-like particle vaccine confers protection against Enterovirus D68 lethal challenge in mice[J]. Vaccine, 2018, 36(5): 653-659
    [14] Ng BG, Asteggiano CG, Kircher M, Buckingham KJ, Raymond K, Nickerson DA, Shendure J, Bamshad MJ, University of Washington Center for Mendelian Genomics, Ensslen M, et al. Encephalopathy caused by novel mutations in the CMP-sialic acid transporter, SLC35A1[J]. American Journal of Medical Genetics Part A, 2017, 173(11): 2906-2911
    [15] Baggen J, Thibaut HJ, Staring J, Jae LT, Liu Y, Guo HB, Slager JJ, De Bruin JW, Van Vliet ALW, Blomen VA, et al. Enterovirus D68 receptor requirements unveiled by haploid genetics[J]. PNAS, 2016, 113(5): 1399-1404
    [16] Baggen J, Liu Y, Lyoo H, Van Vliet ALW, Wahedi M, De Bruin JW, Roberts RW, Overduin P, Meijer A, Rossmann MG, et al. Bypassing pan-Enterovirus host factor PLA2G16[J]. Nature Communications, 2019, 10: 3171
    [17] Mizuno T, Yoshihara Y, Inazawa J, Kagamiyama H, Mori K. cDNA cloning and chromosomal localization of the human telencephalin and its distinctive interaction with lymphocyte function-associated antigen-1[J]. The Journal of Biological Chemistry, 1997, 272(2): 1156-1163
    [18] Kilgannon P, Turner T, Meyer J, Wisdom W, Gallatin WM. Mapping of the ICAM-5 (telencephalin) gene, a neuronal member of the ICAM family, to a location between ICAM-1 and ICAM-3 on human chromosome 19p13.2[J]. Genomics, 1998, 54(2): 328-330
    [19] Yang HP. Structure, expression, and function of ICAM-5[J]. Comparative and Functional Genomics, 2012, 2012: 368938
    [20] 王风玲, 崔淑香, 解砚英, 田桂红, 唐伟, 王元书. 胃癌细胞表面α-2,3唾液酸糖链结构的检测及意义[J]. 中国肿瘤临床, 2008, 35(24): 1403-1406 Wang FL, Cui SX, Xie YY, Tian GH, Tang W, Wang YS. Detection of linked sialic acid residues in human gastric adenocarcinoma and its significance[J]. Chinese Journal of Clinical Oncology, 2008, 35(24): 1403-1406(in Chinese)
    [21] Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease[J]. Biological Reviews, 2013, 88(4): 928-943
    [22] Lin XH. Functions of heparan sulfate proteoglycans in cell signaling during development[J]. Development: Cambridge, England, 2004, 131(24): 6009-6021
    [23] Raskov H, Orhan A, Salanti A, Gaggar S, Gögenur I. Natural killer cells in cancer and cancer immunotherapy[J]. Cancer Letters, 2021, 520: 233-242
    [24] Wei W, Guo HR, Chang JL, Yu YZ, Liu GC, Zhang NN, Willard SH, Zheng S, Yu XF. ICAM-5/telencephalin is a functional entry receptor for Enterovirus D68[J]. Cell Host & Microbe, 2016, 20(5): 631-641
    [25] Raemaekers T, Peric A, Baatsen P, Sannerud R, Declerck I, Baert V, Michiels C, Annaert W. ARF6-mediated endosomal transport of telencephalin affects dendritic filopodia-to-spine maturation[J]. The EMBO Journal, 2012, 31(15): 3252-3269
    [26] Psefteli PM, Kitscha P, Vizcay G, Fleck R, Chapple SJ, Mann GE, Fowler M, Siow RC. Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells[J]. Redox Biology, 2021, 38: 101816
    [27] Zhang C, Chen JY, Liu YH, Xu DY. Sialic acid metabolism as a potential therapeutic target of atherosclerosis[J]. Lipids in Health and Disease, 2019, 18(1): 173
    [28] Chen Y, Zheng ZQ, Zhu X, Shi YJ, Tian DD, Zhao FJ, Liu N, Hüppi PS, Troy FA, Wang B. Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation[J]. Molecular Neurobiology, 2015, 52(1): 256-269
    [29] Li CZ, Xie XH, Liu ZJ, Yang JH, Zuo DM, Xu SM. Neu5Ac induces human dental pulp stem cell osteo-/ odontoblastic differentiation by enhancing MAPK/ERK pathway activation[J]. Stem Cells International, 2021, 2021: 5560872
    [30] Abdulkhalek S, Amith SR, Franchuk SL, Jayanth P, Guo M, Finlay T, Gilmour A, Guzzo C, Gee K, Beyaert R, et al. Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for toll-like receptor activation and cellular signaling[J]. The Journal of Biological Chemistry, 2011, 286(42): 36532-36549
    [31] Yu X, Wu Q, Wang LP, Zhao YJ, Zhang QQ, Meng QT, Pawan, Wang SJ. Silencing of ST6GalNAc I suppresses the proliferation, migration and invasion of hepatocarcinoma cells through PI3K/AKT/NF-κB pathway[J]. Tumor Biology, 2016, 37(9): 12213-12221
    [32] Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease[J]. Nature Reviews Genetics, 2019, 20(11): 657-674
    [33] Fang R, Wang CG, Jiang QF, Lv MZ, Gao PF, Yu XY, Mu P, Zhang R, Bi S, Feng JM, et al. NEMO-IKKβ are essential for IRF3 and NF-κB activation in the cGAS-STING pathway[J]. The Journal of Immunology, 2017, 199(9): 3222-3233
    [34] Maruya SI, Myers JN, Weber RS, Rosenthal DI, Lotan R, El-Naggar AK. ICAM-5 (telencephalin) gene expression in head and neck squamous carcinoma tumorigenesis and perineural invasion![J]. Oral Oncology, 2005, 41(6): 580-588
    [35] Jiang YM, Pin L, Shi WQ, Huang Q, Wang LL, Liu HS. SAA1 regulates pro-labour mediators in term labour by activating YAP pathway[J]. Molecular and Cellular Biochemistry, 2021, 476(7): 2791-2801
    [36] Russell CJ, Webster RG. The genesis of a pandemic influenza virus[J]. Cell, 2005, 123(3): 368-371
    [37] Soares CO, Grosso AS, Ereño-Orbea J, Coelho H, Marcelo F. Molecular recognition insights of sialic acid glycans by distinct receptors unveiled by NMR and molecular modeling[J]. Frontiers in Molecular Biosciences, 2021, 8: 727847
    [38] Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways[J]. The Journal of Clinical Investigation, 2002, 109(5): 571-577
    [39] Guo HB, Rabouw H, Slomp A, Dai ML,Van Der Vegt F, Van Lent JWM, McBride R, Paulson JC, De Groot RJ, Van Kuppeveld FJM, et al. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces[J]. PLoS Pathogens, 2018, 14(8): e1007233
    [40] Maginnis MS. Virus-receptor interactions: the key to cellular invasion[J]. Journal of Molecular Biology, 2018, 430(17): 2590-2611
    [41] Uncapher CR, Dewitt CM, Colonno RJ. The major and minor group receptor families contain all but one human rhinovirus serotype[J]. Virology, 1991, 180(2): 814-817
    [42] Liu Y, Sheng J, Baggen J, Meng G, Xiao C, Thibaut HJ, Van Kuppeveld FJM, Rossmann MG. Sialic acid-dependent cell entry of human Enterovirus D68[J]. Nature Communications, 2015, 6: 8865
    [43] Ströh LJ, Stehle T. Glycan engagement by viruses: receptor switches and specificity[J]. Annual Review of Virology, 2014, 1(1): 285-306
    [44] García B, Merayo-Lloves J, Martin C, Alcalde I, Quirós LM, Vazquez F. Surface proteoglycans as mediators in bacterial pathogens infections[J]. Frontiers in Microbiology, 2016, 7: 220
    [45] Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan sulfate proteoglycans and viral attachment: true receptors or adaptation bias?[J]. Viruses, 2019, 11(7): 596
    [46] Shukla D, Liu J, Blaiklock P, Shworak NW, Bai XM, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG. A novel role for 3-O-sulfated heparan sulfate in Herpes simplex virus 1 entry[J]. Cell, 1999, 99(1): 13-22
    [47] Smura T, Ylipaasto P, Klemola P, Kaijalainen S, Kyllönen L, Sordi V, Piemonti L, Roivainen M. Cellular tropism of human Enterovirus D species serotypes EV-94, EV-70, and EV-68in vitro: implications for pathogenesis[J]. Journal of Medical Virology, 2010, 82(11): 1940-1949
    [48] Birkner K, Loos J, Gollan R, Steffen F, Wasser B, Ruck T, Meuth SG, Zipp F, Bittner S. Neuronal ICAM-5 plays a neuroprotective role in progressive neurodegeneration[J]. Frontiers in Neurology, 2019, 10: 205
    [49] Royston L, Tapparel C. Rhinoviruses and respiratory Enteroviruses: not as simple as ABC[J]. Viruses, 2016, 8(1): 16
    [50] Shafren DR, Dorahy DJ, Greive SJ, Burns GF, Barry RD. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21[J]. Journal of Virology, 1997, 71(1): 785-789
    [51] Jiang YH, Liu SN, Shen SY, Guo HR, Huang HL, Wei W. Methyl-β-cyclodextrin inhibits EV-D68 virus entry by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts[J]. Antiviral Research, 2020, 176: 104752
    [52] Sun SY, Bian LL, Gao F, Du RX, Hu YL, Fu Y, Su Y, Wu X, Mao QY, Liang ZL. A neonatal mouse model of Enterovirus D68 infection induces both interstitial pneumonia and acute flaccid myelitis[J]. Antiviral Research, 2019, 161: 108-115
    [53] Hixon AM, Yu GX, Leser JS, Yagi S, Clarke P, Chiu CY, Tyler KL. A mouse model of paralytic myelitis caused by Enterovirus D68[J]. PLoS Pathogens, 2017, 13(2): e1006199
    [54] Imamura T, Okamoto M, Nakakita SI, Suzuki A, Saito M, Tamaki R, Lupisan S, Roy CN, Hiramatsu H, Sugawara KE, et al. Antigenic and receptor binding properties of Enterovirus 68[J]. Journal of Virology, 2014, 88(5): 2374-2384
    [55] Imamura T, Okamoto M, Oshitani H. Receptor-binding assays of Enterovirus D68[J]. Methods in Molecular Biology: Clifton, N J, 2020, 2132: 629-639
    [56] Zhang C, Xu C, Dai W, Wang Y, Liu Z, Zhang X, Wang X, Wang H, Gong S, Cong Y, et al. Functional and structural characterization of a two-MAb cocktail for delayed treatment of Enterovirus D68 infections[J]. Nature Communications, 2021, 12: 2904
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王静,王士金,王威,魏伟. 肠道病毒D68受体研究进展[J]. 微生物学通报, 2022, 49(8): 3500-3507

复制
分享
文章指标
  • 点击次数:178
  • 下载次数: 1353
  • HTML阅读次数: 1491
  • 引用次数: 0
历史
  • 收稿日期:2021-12-13
  • 录用日期:2022-03-14
  • 在线发布日期: 2022-07-28
  • 出版日期: 2022-08-20
文章二维码