科微学术

微生物学通报

一株重寄生枝孢菌的基因组测序及重寄生机制分析
作者:
基金项目:

云南省农业基础研究联合专项面上项目(2017FG001-043);中央引领地方科技发展专项资金(219001);云南省教育厅科学研究基金(2021Y270)


Genome sequencing and mycoparasitism mechanism of a Cladosporium sp. strain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】枝孢菌SYC63是一株具有重寄生作用和抗菌活性的潜在生防菌株,目前尚无研究报道该菌株的全基因组序列,因此限制了其开发与利用。对该菌株进行基因组测序与分析,将进一步了解其重寄生的分子机制,为其在生物防治上的应用奠定研究基础。【目的】解析枝孢菌SYC63基因组序列信息,初步探究该菌的重寄生作用机制。【方法】利用二代高通量测序平台对枝孢菌SYC63进行全基因组测序,运用相关软件对其测序数据进行基因组组装、基因功能注释、预测次级代谢产物合成基因簇并分析重寄生相关的碳水化合物酶类基因等。【结果】基因组组装后共得到17个contigs,总长度为31 912 211 bp,GC含量为52.80%,预测到12 327个编码基因。其中,4 029、949和6 595个基因分别能在KEGG、COG和GO数据库中被注释到,同时还预测到25个次级代谢产物合成基因簇。对重寄生机制相关的碳水化合物酶类进行分析并与重寄生菌株(拟盘多毛孢菌、木霉及盾壳霉)比较,发现该菌具有较多的糖苷水解酶和糖脂酶基因,而且细胞壁降解酶类基因经锈菌孢子壁处理后在转录组测序中显著上调表达,初步分析了该菌与重寄生木霉在分子水平上的差异及不同于木霉真菌的寄生机制。【结论】从基因组层面解析了枝孢菌的重寄生机制,为深入探究其寄生机制及次生代谢产物的挖掘提供参考信息,对后续开发与利用具有重要意义。

    Abstract:

    [Background] Cladosporium sp. SYC63 is a potential biocontrol strain with mycoparasitism and antimicrobial activity. Little is known about the whole genome sequence of this strain, which limits its development and utilization. Genome sequencing and analysis will help us understand the mycoparasitism mechanism of this strain. [Objective] The aim is to analyze the genome sequence of SYC63 and preliminarily explore the mechanism of its mycoparasitism. [Methods] The whole genome of SYC63 was sequenced on the high-throughput sequencing platform, and the genomics tools were employed for sequence assembly, gene prediction and functional annotation, prediction of secondary metabolite synthesis gene clusters, and statistical analysis of carbohydrate-active enzyme genes related to mycoparasitism. [Results] A total of 17 contigs were obtained after genome assembly, with the total length of 31 912 211 bp, the GC content of 52.80%, and 12 327 coding genes. Among them, 4 029, 949 and 6 595 genes were annotated in KEGG, COG and GO databases, respectively. At the same time, 25 gene clusters for secondary metabolite synthesis were predicted. The strain SYC63 had more glycoside hydrolase and glycolipase genes than other mycoparasitic strains (Pestalotiopsis sp., Trichoderma sp. and Coniothyrium minitans). After treatment of the spore wall with rust fungus, the expression of cell wall-degrading enzyme genes was significantly up-regulated, which revealed that the mycoparasitism mechanism of SYC63 was different from that of Trichoderma. [Conclusion] We explored the mycoparasitism mechanism of Cladosporium at the genome level, providing reference information for further studying the mycoparasitism mechanism and mining the secondary metabolites, which is of great significance for the subsequent development and utilization of Cladosporium.

    参考文献
    [1] 李利. 白粉菌重寄生真菌的分离鉴定及生物学特性研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2016 Li L. Studies on isolation and identification of mycoparasites from pathogens of powdery mildew and its biological characteristics[D]. Yangling: Masterʼs Thesis of Northwest A&F University, 2016(in Chinese)
    [2] 陈广艳. 国内研究植物锈菌重寄生菌的现状[J]. 安徽农业科学, 2006, 34(8): 1531-1532 Chen GY. Research advance in mycoparasites of plant rusts in China[J]. Journal of Anhui Agricultural Sciences, 2006, 34(8): 1531-1532(in Chinese)
    [3] 杨艳红, 陈玉惠. 植物病原菌重寄生菌作用机理的研究进展[J]. 西南林学院学报, 2004, 24(2): 70-75 Yang YH, Chen YH. Advances on mechanism of mycoparasites penetrating phytopathogens[J]. Journal of Southwest Forestry College, 2004, 24(2): 70-75(in Chinese)
    [4] Deacon JW. Fungal biology[M]. 4th ed. Oxford, UK: Blackwell Press, 2006
    [5] 王瑞. 两种β-1,3-葡聚糖酶的性质表征与功能分析[D]. 大连: 大连理工大学硕士学位论文, 2017 Wang R. Characterization and functional analysis of β-1,3-glucanases from insect and bacterium[D]. Dalian: Masterʼs Thesis of Dalian University of Technology, 2017(in Chinese)
    [6] 赵会长. 盾壳霉基因组学及其重寄生机制研究[D]. 武汉: 华中农业大学博士学位论文, 2020 Zhao HC. Genomics and mycoparasitic mechanism analysis of the mycoparasite coinithyrium minitans[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2020(in Chinese)
    [7] 李靖, 周利, 陈玉惠, 李永和. 2株茶藨生柱锈重寄生木霉胞壁降解酶的基本性质研究[J]. 中国农学通报, 2012, 28(13): 85-91 Li J, Zhou L, Chen YH, Li YH. The study on degrading enzymes of cell wall from two mycoparasites of Cronartium ribicola[J]. Chinese Agricultural Science Bulletin, 2012, 28(13): 85-91(in Chinese)
    [8] 尤佳琪, 吴明德, 李国庆. 木霉在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019, 35(6): 966-976 You JQ, Wu MD, Li GQ. Application and mechanism of Trichoderma in biological control of plant disease[J]. Chinese Journal of Biological Control, 2019, 35(6): 966-976(in Chinese)
    [9] Assante G, Maffi D, Saracchi M, Farina G, Moricca S, Ragazzi A. Histological studies on the mycoparasitism of Cladosporium tenuissimum on urediniospores of Uromyces appendiculatus[J]. Mycological Research, 2004, 108(2): 170-182
    [10] 赵桂华, 管斌, 刘国华. 林木锈病生物防治的研究进展[J]. 江苏农业科学, 2010, 38(4): 115-116, 192 Zhao GH, Guan B, Liu GH. Advances on biological control of forest rusts[J]. Jiangsu Agricultural Sciences, 2010, 38(4): 115-116, 192(in Chinese)
    [11] Chaibub AA, de Sousa TP, de Araújo LG, de Filippi MCC. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens[J]. Microbiological Research, 2020, 231: 126353
    [12] 李靖, 刘风路, 陈玉惠. 茶麃生柱锈菌重寄生拟盘多毛孢产毒培养条件的筛选[J]. 江西农业大学学报, 2017, 39(2): 395-401 Li J, Liu FL, Chen YH. Culture condition screening for toxin production of mycoparasites (Pestalotiopsis spp.) from Cronartium ribicola[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(2): 395-401(in Chinese)
    [13] Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 2012, 40(W1): W445-W451
    [14] 曹玉陵, 唐思敏, 张添, 包斌, 吴文惠. 一株稀有海洋真菌Stachybotrys longispora FG216的De Novo测序及基因组学分析[J]. 微生物学通报, 2021, 48(10): 3457-3471 Cao YL, Tang SM, Zhang T, Bao B, Wu WH. De novo sequencing and genomics analysis of a rare marine fungus Stachybotrys longispora FG216[J]. Microbiology China, 2021, 48(10): 3457-3471(in Chinese)
    [15] 周航, 鲍泽然, 施玉玲, 李靖, 陈玉惠. 4种木霉对松疱锈病菌细胞壁的破坏作用[J]. 西南林业大学学报(自然科学版), 2017, 37(4): 120-125 Zhou H, Bao ZR, Shi YL, Li J, Chen YH. The destructive effects of 4 species of Trichoderma on Cronartium ribicola[J]. Journal of Southwest Forestry University: Natural Sciences, 2017, 37(4): 120-125(in Chinese)
    [16] 乔宏萍, 宗兆锋. 用重寄生菌防治植物病害[J]. 中国生物防治, 2002, 18(4): 176-179 Qiao HP, Zong ZF. Biological control of plant pathogens with hyperparasites[J]. Chinese Journal of Biological Control, 2002, 18(4): 176-179(in Chinese)
    [17] 孙青, 蒋细良, 庞莉, 王丽荣, 李梅. 哈茨木霉Th-33全基因组序列测定与分析[J]. 中国生物防治学报, 2016, 32(2): 205-214 Sun Q, Jiang XL, Pang L, Wang LR, Li M. The genome sequence of Trichoderma harzianum Th-33[J]. Chinese Journal of Biological Control, 2016, 32(2): 205-214(in Chinese)
    [18] 王勇超, 刘志华, 安柳迪, 张丛兴, 王金杰. 绿木霉Gv29-8丝氨酸蛋白酶S8/S53超家族基因特性及功能[J]. 微生物学通报, 2020, 47(2): 532-541 Wang YC, Liu ZH, An LD, Zhang CX, Wang JJ. Characterization of S8/S53 serine protease superfamily gene of Trichoderma virens Gv29-8[J]. Microbiology China, 2020, 47(2): 532-541(in Chinese)
    [19] Cutler HG, Cox RH, Crumley FG, Cole PD. 6-pentyl-alpha-pyrone from Trichoderma harzianum: Its plant growth inhibitory and antimicrobial properties[J]. Agricultural and Biological Chemistry, 1986, 50(11): 2943-2945
    [20] Scarselletti R, Faull JL. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici[J]. Mycological Research, 1994, 98(10): 1207-1209
    [21] El-Hasan A, Walker F, Buchenauer H. Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme[J]. Journal of Phytopathology, 2008, 156(2): 79-87
    [22] Cooney JM, Lauren DR, di Menna ME. Impact of competitive fungi on trichothecene production by Fusarium graminearum[J]. Journal of Agricultural and Food Chemistry, 2001, 49(1): 522-526
    [23] 李靖, 谢津, 孔磊, 张登云, 隋国强, 陈玉惠. 两株锈菌重寄生菌毒素的分离鉴定及活性研究[J]. 生物学杂志, 2022, 39(1): 42-45 Li J, Xie J, Kong L, Zhang DY, Sui GQ, Chen YH. Toxins isolation and identification from two mycoparasites of plant rust and its activities[J]. Journal of Biology, 2022, 39(1): 42-45(in Chinese)
    [24] Moricca S, Ragazzi A, Mitchelson KR, Assante G. Antagonism of the two-needle pine stem rust fungi Cronartium flaccidum and Peridermium pini by Cladosporium tenuissimum in vitro and in planta[J]. Phytopathology, 2001, 91(5): 457-468
    [25] Torres DE, Rojas-Martínez RI, Zavaleta-Mejía E, Guevara-Fefer P, Márquez-Guzmán GJ, Pérez-Martínez C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust[J]. PLoS One, 2017, 12(1): e0170782
    [26] Nasini G, Arnone A, Assante G, Bava A, Moricca S, Ragazzi A. Secondary mould metabolites of Cladosporium tenuissimum, a hyperparasite of rust fungi[J]. Phytochemistry, 2004, 65(14): 2107-2111
    [27] Sakagami Y, Sano A, Hara O, Mikawa T, Marumo S. Cladosporol, β-1,3-glucan biosynthesis inhibitor, isolated from fungus, Cladosporium cladosporioides[J]. Tetrahedron Letters, 1995, 36(9): 1469-1472
    [28] Donzelli BG, Harman GE. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1[J]. Applied and Environmental Microbiology, 2001, 67(12): 5643-5647
    [29] Hu G, Leger RJS. A phylogenomic approach to reconstructing the diversification of serine proteases in fungi[J]. Journal of Evolutionary Biology, 2004, 17(6): 1204-1214
    [30] Gruber S, Seidl-Seiboth V. Self versus non-self: fungal cell wall degradation in Trichoderma[J]. Microbiology: Reading, England, 2012, 158(Pt 1): 26-34
    [31] Akimitsu K, Isshiki A, Ohtani K, Yamamoto H, Eshel D, Prusky D. Sugars and pH: a clue to the regulation of fungal cell wall-degrading enzymes in plants[J]. Physiological and Molecular Plant Pathology, 2004, 65(6): 271-275
    [32] Seiboth B, Herold S, Kubicek CP. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei[J]. Sub-Cellular Biochemistry, 2012, 64: 367-390
    [33] Quoc NB, Chau NNB. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae[J]. Current Protein & Peptide Science, 2017, 18(10): 1019-1034
    [34] 付博, 樊泽正, 杜毅涛, 郭子晟, 李忠玲. 微生物基因组挖掘的方法和研究策略[J]. 基因组学与应用生物学, 2018, 37(6): 2451-2458 Fu B, Fan ZZ, Du YT, Guo ZS, Li ZL. Approaches and strategies of genome mining in microbes[J]. Genomics and Applied Biology, 2018, 37(6): 2451-2458(in Chinese)
    [35] 杨杰. 枯草杆菌fmb60的NRPS和Ⅰ型PKS基因簇代谢产物发掘及其生物活性研究[D]. 南京: 南京农业大学博士学位论文, 2017 Yang J. Genomics-driven discovery of NRPS and type Ⅰ PKS metabolites from Bacillus subtilis fmb60 and their bioactivity[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2017(in Chinese)
    [36] Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, Ngeow YF, Hoh CC, Lee KW, Yee WY. Sequencing of Cladosporium sphaerospermum, a Dematiaceous fungus isolated from blood culture[J]. Eukaryotic Cell, 2012, 11(5): 705-706
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梅超,范世昌,艾小满,李靖. 一株重寄生枝孢菌的基因组测序及重寄生机制分析[J]. 微生物学通报, 2022, 49(8): 3310-3323

复制
分享
文章指标
  • 点击次数:315
  • 下载次数: 1177
  • HTML阅读次数: 651
  • 引用次数: 0
历史
  • 收稿日期:2021-12-01
  • 录用日期:2022-02-08
  • 在线发布日期: 2022-07-28
  • 出版日期: 2022-08-20
文章二维码