科微学术

微生物学通报

mRNA技术应对病毒传染病的研究进展
作者:
基金项目:

国家重点研发计划应急项目(2020YFC0841000);国家自然科学基金面上项目(31770995,82171820)


Advancements in mRNA technology-based therapies for infectious diseases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    信使核糖核酸(messenger RNA,mRNA)疫苗和抗体是近年来兴起的一种新型疫苗和抗体技术。与传统疫苗相比,mRNA疫苗具有安全性高、均衡免疫性好、研发周期短、生产成本低等优势,mRNA抗体比其他形式递送的抗体在体内发挥生物学效应的时间更早也更持久。随着mRNA修饰与递送技术的快速发展,mRNA技术迅速走向成熟,在肿瘤治疗、病毒传染疾病的预防和治疗等方面展现出广阔的应用前景,特别是新型冠状病毒mRNA疫苗以创纪录的速度完成研发并成功应用,为未来mRNA技术的推广铺平了道路。本文综述了mRNA技术领域的重要突破,重点关注mRNA疫苗和抗体在应对病毒传染病中的重大进展,并展望了未来该技术在抗病毒感染领域的研究趋势。

    Abstract:

    The messenger RNA (mRNA) platform has emerged as a novel nucleic acid technology for the development of vaccines and antibodies in the last decade. mRNA vaccines are superior to conventional vaccines because of safe administration, high potency, short development cycle and low cost of manufacturing. The mRNA-encoded antibodies prevail over other antibody expression platforms because of the high level and long duration of protein expression. Owing to the recent innovations in mRNA modification and delivery, mRNA platform has been developing rapidly and become a promising tool in vaccine development and cancer therapy. It is a miraculous scientific triumph to develop novel mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which paves the way to a promising future of this field. Here, we overview the ongoing efforts for the optimization of mRNA approaches, with an emphasis on the research progress of mRNA vaccines and mRNA-encoded antibodies for infectious diseases. Furthermore, we put forward the key issues facing the mRNA platform in combating infectious diseases.

    参考文献
    [1] Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949 Pt 1): 1465-1468
    [2] Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA[J]. Science, 1992, 255(5047): 996-998
    [3] Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective[J]. Npj Vaccines, 2020, 5: 11
    [4] Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development[J]. Vaccines, 2021, 9(2): 97
    [5] Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines[J]. Advanced Drug Delivery Reviews, 2021, 170: 83-112
    [6] Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, Baumhof P, Scheel B, Koch SD, Fotin-Mleczek M. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines[J]. Human Vaccines & Immunotherapeutics, 2013, 9(10): 2263-2276
    [7] Sullenger BA, Nair S. From the RNA world to the clinic[J]. Science, 2016, 352(6292): 1417-1420
    [8] Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines[J]. Current Opinion in Immunology, 2016, 41: 18-22
    [9] Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp- mRNAs[J]. Nucleic Acids Research, 2013, 42(5): 3228-3245
    [10] Jang SK, Paek KY. Cap-dependent translation is mediated by ‘RNA looping’ rather than ‘ribosome scanning’[J]. RNA Biology, 2016, 13(1): 1-5
    [11] Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines: a new era in vaccinology[J]. Nature Reviews Drug Discovery, 2018, 17(4): 261-279
    [12] Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE. Novel “anti-reverse” cap analogs with superior translational properties[J]. RNA, 2003, 9(9): 1108-1122
    [13] Pascolo S. Synthetic messenger RNA-based vaccines: from scorn to hype[J]. Viruses, 2021, 13(2): 270
    [14] Henderson JM, Ujita A, Hill E, Yousif-Rosales S, Smith C, Ko N, McReynolds T, Cabral CR, Escamilla-Powers JR, Houston ME. Correction: cap 1 messenger RNA synthesis with co-transcriptional CleanCap® analog by in vitro transcription[J]. Current Protocols, 2021, 1(12): e336
    [15] Asrani KH, Farelli JD, Stahley MR, Miller RL, Cheng CJ, Subramanian RR, Brown JM. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA[J]. RNA Biology, 2018, 15(6): 756-762
    [16] Orlandini Von Niessen AG, Poleganov MA, Rechner C, Plaschke A, Kranz LM, Fesser S, Diken M, Löwer M, Vallazza B, Beissert T, et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3' UTRs identified by cellular library screening[J]. Molecular Therapy, 2019, 27(4): 824-836
    [17] Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, Seelig G. Human 5' UTR design and variant effect prediction from a massively parallel translation assay[J]. Nature Biotechnology, 2019, 37(7): 803-809
    [18] Jain R, Frederick JP, Huang EY, Burke KE, Mauger DM, Andrianova EA, Farlow SJ, Siddiqui S, Pimentel J, Cheung-Ong K, et al. microRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct[J]. Nucleic Acid Therapeutics, 2018, 28(5): 285-296
    [19] Hewitt SL, Bai AL, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs[J]. Science Translational Medicine, 2019, 11(477): eaat9143
    [20] Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them[J]. Nature Reviews Molecular Cell Biology, 2018, 19(3): 158-174
    [21] Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy[J]. Cellular and Molecular Life Sciences: CMLS, 2019, 76(2): 301-328
    [22] Thess A, Grund S, Mui BL, Hope MJ, Baumhof P, Fotin-Mleczek M, Schlake T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals[J]. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2015, 23(9): 1456-1464
    [23] Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells[J]. PLoS Biology, 2006, 4(6): e180
    [24] Wayment-Steele HK, Kim DS, Choe CA, Nicol JJ, Wellington-Oguri R, Watkins AM, Parra Sperberg RA, Huang PS, Participants E, Das R. Theoretical basis for stabilizing messenger RNA through secondary structure design[J]. Nucleic Acids Research, 2021, 49(18): 10604-10617
    [25] Lima SA, Chipman LB, Nicholson AL, Chen YH, Yee BA, Yeo GW, Coller J, Pasquinelli AE. Short poly(A) tails are a conserved feature of highly expressed genes[J]. Nature Structural & Molecular Biology, 2017, 24(12): 1057-1063
    [26] Grier AE, Burleigh S, Sahni J, Clough CA, Cardot V, Choe DC, Krutein MC, Rawlings DJ, Jensen MC, Scharenberg AM, et al. pEVL: a linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences[J]. Molecular Therapy- Nucleic Acids, 2016, 5: e306
    [27] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. The New England Journal of Medicine, 2021, 384(5): 403-416
    [28] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine[J]. Annals of Internal Medicine, 2020, 383(27): 2603-2615
    [29] Wang HM, Hu X, Huang MY, Liu J, Gu Y, Ma LJ, Zhou Q, Cao XT. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nature Communications, 2019, 10: 1898
    [30] Chen RY, Zhang H, Yan JX, Bryers JD. Scaffold-mediated delivery for non-viral mRNA vaccines[J]. Gene Therapy, 2018, 25(8): 556-567
    [31] Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies[J]. European Journal of Immunology, 2000, 30(1): 1-7
    [32] Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness[J]. Nature, 2020, 586(7830): 567-571
    [33] Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation[J]. Nature Reviews Drug Discovery, 2021, 20(11): 817-838
    [34] La Manna P, De Rosa M, Talotta C, Rescifina A, Floresta G, Soriente A, Gaeta C, Neri P. Synergic interplay between halogen bonding and hydrogen bonding in the activation of a neutral substrate in a nanoconfined space[J]. Angewandte Chemie: International Ed in English, 2020, 59(2): 811-818
    [35] Miao L, Li LX, Huang YX, Delcassian D, Chahal J, Han JS, Shi YH, Sadtler K, Gao WT, Lin JQ, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation[J]. Nature Biotechnology, 2019, 37(10): 1174-1185
    [36] Ke XY, Shelton L, Hu YZ, Zhu YN, Chow E, Tang HY, Santos JL, Mao HQ. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 35835-35844
    [37] Tan L, Zheng T, Li M, Zhong XF, Tang Y, Qin M, Sun X. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates[J]. Drug Delivery and Translational Research, 2020, 10(3): 678-689
    [38] Kaczmarek JC, Kauffman KJ, Fenton OS, Sadtler K, Patel AK, Heartlein MW, DeRosa F, Anderson DG. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells[J]. Nano Letters, 2018, 18(10): 6449-6454
    [39] Kaczmarek JC, Patel AK, Kauffman KJ, Fenton OS, Webber MJ, Heartlein MW, DeRosa F, Anderson DG. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs[J]. Angewandte Chemie: International Ed in English, 2016, 55(44): 13808-13812
    [40] Kim HJ, Ogura S, Otabe T, Kamegawa R, Sato M, Kataoka K, Miyata K. Fine-tuning of hydrophobicity in amphiphilic polyaspartamide derivatives for rapid and transient expression of messenger RNA directed toward genome engineering in brain[J]. ACS Central Science, 2019, 5(11): 1866-1875
    [41] McKinlay CJ, Vargas JR, Blake TR, Hardy JW, Kanada M, Contag CH, Wender PA, Waymouth RM. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals[J]. PNAS, 2017, 114(4): E448-E456
    [42] Haabeth OAW, Blake TR, McKinlay CJ, Waymouth RM, Wender PA, Levy R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice[J]. PNAS, 2018, 115(39): E9153-E9161
    [43] Nissim A, Chernajovsky Y. Historical development of monoclonal antibody therapeutics[J]. Handbook of Experimental Pharmacology, 2008(181): 3-18
    [44] Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market[J]. mAbs, 2015, 7(1): 9-14
    [45] Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020[J]. mAbs, 2020, 12(1): 1703531
    [46] Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, Lynn A, Bulychev A, McFadyen I, Chan J, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates[J]. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2018, 26(6): 1509-1519
    [47] Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of novel DNA-encoded PCSK9 monoclonal antibodies as lipid-lowering therapeutics[J]. Molecular Therapy, 2019, 27(1): 188-199
    [48] Balazs AB, Chen J, Hong CM, Rao DS, Yang LL, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis[J]. Nature, 2012, 481(7379): 81-84
    [49] Kose N, Fox JM, Sapparapu G, Bombardi R, Tennekoon RN, De Silva AD, Elbashir SM, Theisen MA, Humphris-Narayanan E, Ciaramella G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection[J]. Science Immunology, 2019, 4(35): eaaw6647
    [50] Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy[J]. Vaccines, 2021, 9(2): 108
    [51] Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults[J]. Nature, 2020, 586(7830): 589-593
    [52] Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates[J]. The New England Journal of Medicine, 2020, 383(25): 2439-2450
    [53] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J]. Nature, 2020, 586(7830): 594-599
    [54] Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting[J]. The New England Journal of Medicine, 2021, 384(15): 1412-1423
    [55] Martin C, Lowery D. mRNA vaccines: intellectual property landscape[J]. Nature Reviews Drug Discovery, 2020, 19(9): 578
    [56] Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates[J]. The New England Journal of Medicine, 2020, 383(16): 1544-1555
    [57] Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, et al. A thermostable mRNA vaccine against COVID-19[J]. Cell, 2020, 182(5): 1271-1283.e16
    [58] Chen GL, Li XF, Dai XH, Li N, Cheng ML, Huang Z, Shen J, Ge YH, Shen ZW, Deng YQ, et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomized, double-blind, placebo-controlled, phase 1 trial[J]. The Lancet Microbe, 2022, 3(3): e193-e202
    [59] Pozzetto B, Legros V, Djebali S, Barateau V, Guibert N, Villard M, Peyrot L, Allatif O, Fassier JB, Massardier-Pilonchéry A, et al. Immunogenicity and efficacy of heterologous ChAdOx1-BNT162b2 vaccination[J]. Nature, 2021, 600(7890): 701-706
    [60] Normark J, Vikström L, Gwon YD, Persson IL, Edin A, Björsell T, Dernstedt A, Christ W, Tevell S, Evander M, et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination[J]. The New England Journal of Medicine, 2021, 385(11): 1049-1051
    [61] Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, et al. Effectiveness of covid-19 vaccines against the B.1.617.2(delta) variant[J]. Missouri Medicine, 2021, 385(7): 585-594
    [62] Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu PW, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity[J]. Nature, 2021, 600(7889): 523-529
    [63] Neidleman J, Luo XY, McGregor M, Xie GR, Murray V, Greene WC, Lee SA, Roan NR. mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status[J]. eLife, 2021, 10: e72619
    [64] Amanat F, Thapa M, Lei T, Ahmed SMS, Adelsberg DC, Carreño JM, Strohmeier S, Schmitz AJ, Zafar S, Zhou JQ, et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2[J]. Cell, 2021, 184(15): 3936-3948.e10
    [65] Painter MM, Mathew D, Goel RR, Apostolidis SA, Pattekar A, Kuthuru O, Baxter AE, Herati RS, Oldridge DA, Gouma S, et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination[J]. Immunity, 2021, 54(9): 2133-2142.e3
    [66] Ciabattini A, Pastore G, Fiorino F, Polvere J, Lucchesi S, Pettini E, Auddino S, Rancan I, Durante M, Miscia M, et al. Evidence of SARS-CoV-2-specific memory B cells six months after vaccination with the BNT162b2 mRNA vaccine[J]. Frontiers in Immunology, 2021, 12: 740708
    [67] Woldemeskel BA, Garliss CC, Blankson JN. mRNA vaccine-elicited SARS-CoV-2-specific T cells persist at 6 months and recognize the delta variant[J]. Clinical Infectious Diseases, 2021
    [68] Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, Donahue JG, Kharbanda EO, Naleway A, Nelson JC, et al. Surveillance for adverse events after COVID-19 mRNA vaccination[J]. JAMA, 2021, 326(14): 1390-1399
    [69] Sun H. On preliminary findings of mRNA covid-19 vaccine safety in pregnant persons[J]. The New England Journal of Medicine, 2021, 385(16): 1535-1536
    [70] Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, Olsha-Castell S, Arad D, Hasin T, Levi N, et al. Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel[J]. The New England Journal of Medicine, 2021, 385(23): 2140-2149
    [71] Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, Grinberg T, Auster O, Dagan N, Balicer RD, et al. Myocarditis after COVID-19 vaccination in a large health care organization[J]. The New England Journal of Medicine, 2021, 385(23): 2132-2139
    [72] Rodríguez C, Pérez-Nieva A, Máiz L, Meijón M, Llamas P, Monreal M, Bikdeli B, Jiménez D. Vaccine-induced immune thrombotic thrombocytopenia after the BNT162b2 mRNA COVID-19 vaccine: a case study[J]. Thrombosis Research, 2021, 208: 1-3
    [73] Liu ZY, Shi WF, Qin CF. The evolution of Zika virus from Asia to the Americas[J]. Nature Reviews Microbiology, 2019, 17(3): 131-139
    [74] Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, Dowd KA, Sutherland LL, Scearce RM, Parks R, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination[J]. Nature, 2017, 543(7644): 248-251
    [75] Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, et al. Modified mRNA vaccines protect against zika virus infection[J]. Cell, 2017, 168(6): 1114-1125.e10
    [76] Faria NR, Da Silva Azevedo RDS, Kraemer MUG, Souza R, Cunha MS, Hill SC, Thézé J, Bonsall MB, Bowden TA, Rissanen I, et al. Zika virus in the Americas: early epidemiological and genetic findings[J]. Science, 2016, 352(6283): 345-349
    [77] Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection[J]. Nature Biotechnology, 2012, 30(12): 1210-1216
    [78] Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses[J]. Molecular Therapy, 2017, 25(6): 1316-1327
    [79] Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ, Mui BL, Tam YK, Karikó K, Barbosa CJ, Madden TD, et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J]. Nature Communications, 2018, 9: 3361
    [80] Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, Sidik SM, Lourido S, Langer R, Bavari S, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose[J]. PNAS, 2016, 113(29): E4133-E4142
    [81] Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect Guinea pigs from Ebola virus disease[J]. The Journal of Infectious Diseases, 2018, 217(3): 451-455
    [82] Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, Archer J, Seubert A, Otten GR, Beard CW, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines[J]. Molecular Therapy, 2014, 22(12): 2118-2129
    [83] Zhao MN, Li M, Zhang ZR, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA[J]. Drug Delivery, 2016, 23(7): 2596-2607
    [84] Pardi N, LaBranche CC, Ferrari G, Cain DW, Tombácz I, Parks RJ, Muramatsu H, Mui BL, Tam YK, Karikó K, et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques[J]. Molecular Therapy - Nucleic Acids, 2019, 15: 36-47
    [85] Pardi N, Secreto AJ, Shan XC, Debonera F, Glover J, Yi YJ, Muramatsu H, Ni HP, Mui BL, Tam YK, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge[J]. Nature Communications, 2017, 8: 14630
    [86] Fulton BO, Sachs D, Schwarz MC, Palese P, Evans MJ. Transposon mutagenesis of the Zika virus genome highlights regions essential for RNA replication and restricted for immune evasion[J]. Journal of Virology, 2017, 91(15): e00698-e00617
    [87] Li JQ, Zhang ZR, Zhang HQ, Zhang YN, Zeng XY, Zhang QY, Deng CL, Li XD, Zhang B, Ye HQ. Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice[J]. Signal Transduction and Targeted Therapy, 2021, 6: 369
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田颖,张娜娜,秦成峰,李晓峰. mRNA技术应对病毒传染病的研究进展[J]. 微生物学通报, 2022, 49(7): 2849-2861

复制
分享
文章指标
  • 点击次数:359
  • 下载次数: 1036
  • HTML阅读次数: 1651
  • 引用次数: 0
历史
  • 收稿日期:2021-10-20
  • 录用日期:2021-12-09
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码