科微学术

微生物学通报

台风利奇马对城市淡水系统中微生物群落和抗生素耐药性基因的影响
作者:
基金项目:

温州市科技局科研项目(N20190011)


Effects of typhoon Lekima on microbial communities and antibiotic resistance genes in urban freshwater systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】极端天气事件(如台风)带来的强风和降水,会给水生生态系统造成短暂和持久的影响。然而,很少有研究关注台风对水生微生物群落和抗生素耐药性基因(antibiotic resistance genes,ARGs)的影响。【目的】对台风前后城市淡水水域的微生物群落和抗性基因组成进行研究分析,更好地认识极端天气对淡水生态系统的干扰。【方法】在台风前后从4个地点采集了水样,通过宏基因组分析,检测了台风利奇马对温州休闲水域微生物群落和抗性基因的影响。除水生微生物群落和抗性基因外,还分析了每个采样点的物理、化学参数,包括温度、pH、溶解氧、叶绿素a、可溶性活性磷、硝酸盐、亚硝酸盐和铵。【结果】台风登陆后,大多数地点的pH、溶解氧和叶绿素a都有所增加。然而,台风对九山湖的影响要弱于对三垟湿地的影响。台风登陆后,变形菌门、蓝菌门和拟杆菌门的相对丰度增加,而放线菌门的相对丰度下降。在属水平上,栖湖菌的微生物多样性和相对丰度显著增加。在所有的环境因子中,铵是影响微生物群落结构的最重要的环境因子。另外,在所有样本中均检测到35个机会性致病菌类群。台风后,铜绿假单胞菌的相对丰度增加。ARGs显示了空间(采样点间)和时间(台风前后)的变化。冗余分析表明,水总无机氮是影响抗性基因分布的主要环境因子。【结论】这些发现为极端天气(如台风)如何影响淡水系统中的微生物群落和抗性基因提供了新的见解。台风登陆增加了城市淡水系统的公共安全风险,因此,检验检疫方法和手段应该前移,加强对环境健康安全的评价和分析,这将有助于减轻抗生素耐药性和致病菌扩散的风险。

    Abstract:

    [Background] Extreme weather events, such as typhoons, bring transient and lasting effects on aquatic ecosystems due to strong winds and precipitation. However, very few studies have focused on the effects of typhoons on aquatic microbial communities and antibiotic resistance genes (ARGs). [Objective] To understand the effect of extreme weather on freshwater ecosystem, we analyzed the microbial communities and ARGs in urban freshwater before and after typhoon. [Methods] Water samples were collected from four sites before and after the typhoon. The effects of Lekima on the microbial communities and ARGs in recreational waters in Wenzhou were examined by metagenomic analysis in summer, 2019. In addition to the aquatic microbial communities and ARGs, the physical and chemical parameters of water samples from each sampling site were analyzed, including temperature, pH, dissolved oxygen, chlorophyll a, soluble active phosphorus, nitrate, nitrite, andammonium. [Results] The pH, dissolved oxygen, and chlorophyll a at most sites increased after the typhoon, and the typhoon had a weaker effect on Jiushan Lake than on Sanyang Wetland. The relative abundances of Proteobacteria, Cyanobacteria, and Bacteroidetes increased, while that of Actinobacteria decreased after the typhoon. At the genus level, Limnohabitans showcased significantly increased diversity and relative abundance after the typhoon. Among all the environmental factors, ammonium was the key environmental factor affecting microbial community structure. In addition, 35 opportunistic pathogen taxa were detected in all samples. The relative abundance of Pseudomonas aeruginosa, an important opportunistic pathogen, increased after the typhoon. The ARGs showed spatial (among sampling sites) and temporal (before and after the typhoon) variation. A redundancy analysis showed that water total inorganic nitrogen was the main environmental factor affecting the distribution of ARGs.[Conclusion] These findings provide new insights into how extreme weather (e.g., typhoons) influences microbial communities and ARGs in freshwater system. Typhoon landing increases the public safety risk of urban freshwater system. Therefore, the testing and quarantine should be carried out in advance to strengthen the evaluation and analysis of environmental health and safety, which will help to reduce the risk of antibiotic resistance and pathogen diffusion.

    参考文献
    [1] Coumou D, Rahmstorf S. A decade of weather extremes[J]. Nature Climate Change, 2012, 2(7): 491-496
    [2] Nielsen UN, Ball BA. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Global Change Biology, 2015, 21(4): 1407-1421
    [3] Wang XM, Wang WQ, Tong C. A review on impact of typhoons and hurricanes on coastal wetland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(1): 23-29
    [4] Tang DL, Sui GJ, Lavy G, Pozdnyakov D, Song YT, Switzer A. Typhoon Impact and Crisis Management[M]. Springer Berlin Heidelberg, 2014, 40: 7-15
    [5] Byju P, Kumar SP. Physical and biological response of the Arabian Sea to tropical cyclone Phyan and its implications[J]. Marine Environmental Research, 2011, 71(5): 325-330
    [6] Hung CC, Gong GC. Biogeochemical responses in the southern East China Sea after typhoons[J]. Oceanography, 2011, 24(4): 42-51
    [7] Doong DJ, Peng JP, Babanin AV. Field investigations of coastal sea surface temperature drop after typhoon passages[J]. Earth System Science Data, 2019, 11(1): 323-340
    [8] Tseng CH, Chiang PW, Shiah FK, Chen YL, Liou JR, Hsu TC, Maheswararajah S, Saeed I, Halgamuge S, Tang SL. Microbial and viral metagenomes of a subtropical freshwater reservoir subject to climatic disturbances[J]. The ISME Journal, 2013, 7(12): 2374-2386
    [9] Wu J, Gao XJ, Zhu YM, Shi Y, Giorgi F. Projection of the future changes in tropical cyclone activity affecting east Asia over the western north Pacific based on multi-RegCM4 simulations[J]. Advances in Atmospheric Sciences, 2022, 39(2): 284-303
    [10] Fewtrell L, Kay D. Recreational water and infection: a review of recent findings[J]. Current Environmental Health Reports, 2015, 2(1): 85-94
    [11] Su SC, Li CY, Yang JP, Xu QY, Qiu ZG, Xue B, Wang S, Zhao C, Xiao ZH, Wang JF, et al. Distribution of antibiotic resistance genes in three different natural water bodies-a lake, river and sea[J]. International Journal of Environmental Research and Public Health, 2020, 17(2): 552
    [12] Pruden A, Pei RT, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450
    [13] Abriouel H, Omar NB, Molinos AC, López RL, Grande MJ, Martínez-Viedma P, Ortega E, Cañamero MM, Galvez A. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples[J]. International Journal of Food Microbiology, 2008, 123(1/2): 38-49
    [14] Bengtsson-Palme J, Larsson DGJ. Antibiotic resistance genes in the environment: prioritizing risks[J]. Nature Reviews Microbiology, 2015, 13(6): 396
    [15] Ohore OE, Addo FG, Han NN, Li X, Zhang SH. Profiles of ARGs and their relationships with antibiotics, metals and environmental parameters in vertical sediment layers of three lakes in China[J]. Journal of Environmental Management, 2020, 255: 109583
    [16] Jiang L, Hu XL, Xu T, Zhang HC, Sheng D, Yin DQ. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the Total Environment, 2013, 458/459/460: 267-272
    [17] Bai XH, Ma XL, Xu FM, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance[J]. Science of the Total Environment, 2015, 533: 24-31
    [18] Niu ZG, Zhang K, Zhang Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Marine Pollution Bulletin, 2016, 107(1): 245-250
    [19] Tang JY, Bu YQ, Zhang XX, Huang KL, He XW, Ye L, Shan ZJ, Ren HQ. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water[J]. Ecotoxicology and Environmental Safety, 2016, 132: 260-269
    [20] Jiang HY, Zhou RJ, Zhang MD, Cheng ZN, Li J, Zhang G, Chen BW, Zou SC, Yang Y. Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach[J]. Ecotoxicology and Environmental Safety, 2018, 161: 64-69
    [21] Zheng J, Zhou ZC, Wei YY, Chen T, Feng WQ, Chen H. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river[J]. Environment International, 2018, 114: 87-94
    [22] Yan Q, Bi Y, Deng Y, He Z, Wu L, Van Nostrand JD, Shi Z, Li J, Wang X, Hu Z, et al. Impacts of the Three Gorges Dam on microbial structure and potential function[J]. Scientific Reports, 2015, 5: 8605
    [23] Jing XY, Gou HL, Gong YH, Ji YT, Su XL, Zhang J, Han MZ, Xu L, Wang TT. Seasonal dynamics of the coastal bacterioplankton at intensive fish-farming areas of the Yellow Sea, China revealed by high-throughput sequencing[J]. Marine Pollution Bulletin, 2019, 139: 366-375
    [24] Jia SY, Shi P, Hu Q, Li B, Zhang T, Zhang XX. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination[J]. Environmental Science & Technology, 2015, 49(20): 12271-12279
    [25] Mao YJ, Sun J, Guo CC, Wei YQ, Wang XZ, Yang S, Wu C. Effects of typhoon Roke and Haitang on phytoplankton community structure in northeastern South China Sea[J]. Ecosystem Health and Sustainability, 2019, 5(1): 144-154
    [26] Gilcreas FW. Standard methods for the examination of water and waste water[J]. American Journal of Public Health and the Nation’s Health, 1966, 56(3): 387-388
    [27] Feng XQ, Han AX, Huang JP, Yang QY, Lu JF, Zhou Y, Kang YT, Zheng LB, Lou YL, Guan WC. Metagenomic analysis of the microbial community and antibiotic resistance genes in an urban recreational lake JSH[J]. Microbiology China, 2020, 47(10): 3102-3113
    [28] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60
    [29] Ye L, Zhang T. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing[J]. Environmental Science & Technology, 2011, 45(17): 7173-7179
    [30] McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, et al. The comprehensive antibiotic resistance database[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7): 3348-3357
    [31] Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2): 116-123
    [32] Su JQ, An XL, Li B, Chen QL, Gillings MR, Chen H, Zhang T, Zhu YG. Correction to: metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China[J]. Microbiome, 2018, 6: 127
    [33] Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance[J]. Environmental Microbiology, 2011, 13(10): 2752-2767
    [34] Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, Lottig NR, Roden EE, Stanley EH, Stombaugh J, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance[J]. The ISME Journal, 2012, 6(12): 2153-2167
    [35] Chen BW, Yuan K, Chen X, Yang Y, Zhang T, Wang YW, Luan TG, Zou SC, Li XD. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment[J]. Environmental Science & Technology, 2016, 50(13): 6670-6679
    [36] Hu Q, Zhang XX, Jia SY, Huang KL, Tang JY, Shi P, Ye L, Ren HQ. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater[J]. Water Research, 2016, 101: 309-317
    [37] Fang H, Huang KL, Yu JN, Ding CC, Wang ZF, Zhao C, Yuan HZ, Wang Z, Wang S, Hu JL, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211
    [38] West AJ, Lin CW, Lin TC, Hilton RG, Liu SH, Chang CT, Lin KC, Galy A, Sparkes RB, Hovius N. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm[J]. Limnology and Oceanography, 2011, 56(1): 77-85
    [39] Walker ND, Leben RR, Balasubramanian S. Hurricane- forced upwelling and chlorophylla enhancement within cold-core cyclones in the gulf of Mexico[J]. Geophysical Research Letters, 2005, 32: L18610
    [40] Karner M, Fuks D, Herndl GJ. Bacterial activity along a trophic gradient[J]. Microbial Ecology, 1992, 24(3): 243-257
    [41] Ventura RJ, Muhi E, De Los Reyes VC, Sucaldito MN, Tayag E. A community-based gastroenteritis outbreak after typhoon Haiyan, Leyte, Philippines, 2013[J]. Western Pacific Surveillance and Response Journal, 2015, 6(1): 1-6
    [42] Seyfried PL, Cook RJ. Otitis externa infections related to Pseudomonas aeruginosa levels in five Ontario lakes[J]. Canadian Journal of Public Health, 1984, 75(1): 83-91
    [43] Evans MR, Wilkinson EJ, Jones R, Mathias K, Lenartowicz P. Presumed Pseudomonas folliculitis outbreak in children following an outdoor games event[J]. Communicable Disease and Public Health, 2003, 6(1): 18-21
    [44] Garner E, Benitez R, Von Wagoner E, Sawyer R, Schaberg E, Hession WC, Krometis LAH, Badgley BD, Pruden A. Stormwater loadings of antibiotic resistance genes in an urban stream[J]. Water Research, 2017, 123: 144-152
    [45] Sköld O. Sulfonamide resistance: mechanisms and trends[J]. Drug Resistance Updates, 2000, 3(3): 155-160
    [46] Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load[J]. PLoS One, 2014, 9(8): e103705
    [47] Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. Overexpression of resistance-nodulation- cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4389-4393
    [48] Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098): 1107-1111
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丰新倩,刘书绮,韩阿祥,关万春. 台风利奇马对城市淡水系统中微生物群落和抗生素耐药性基因的影响[J]. 微生物学通报, 2022, 49(7): 2428-2441

复制
分享
文章指标
  • 点击次数:408
  • 下载次数: 944
  • HTML阅读次数: 875
  • 引用次数: 0
历史
  • 收稿日期:2021-11-22
  • 录用日期:2022-02-11
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码