科微学术

微生物学通报

亚抑菌浓度博落回生物碱对ExPEC主要外膜蛋白和II型T-A系统表达的影响
作者:
基金项目:

国家自然科学基金青年项目(31802190);福建省自然科学基金(2018J05053);福建省农业科学院基金项目(AGY2018-4)


Effects of sub-inhibitory concentrations of alkaloids from Macleaya cordata on the expression of outer membrane protein and type II toxin-antitoxin systems of ExPEC
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】血根碱、白屈菜红碱、原阿片碱等生物碱是我国二类新兽药博落回散和博普总碱散的主要成分,具有广泛的药理作用。【目的】研究亚抑菌浓度血根碱、白屈菜红碱、原阿片碱对肠外致病性大肠杆菌(extraintestinal pathogenic Escherichia coli,ExPEC)主要外膜蛋白及其调控基因和II型毒素-抗毒素(toxin-antitoxin,T-A)系统基因表达的影响,初步探讨博落回生物碱对ExPEC细菌生理活动影响的可能机制。【方法】比较不同II型T-A系统基因yafONhicABprlF-yhaV缺失的ExPEC对血根碱、白屈菜红碱、原阿片碱及抗生素的最小抑菌浓度;在1/2 MIC亚抑菌浓度血根碱、白屈菜红碱、原阿片碱条件下,比较它们对ExPEC野生型(wild type,WT)菌株和外膜蛋白tolC缺失菌株(ΔtolC)的不同外膜蛋白基因ompCompXtolCompF和调控基因acrRrobmarRrpoSsoxS表达的影响,以及对T-A系统基因yafONhicABprlF-yhaV表达的影响。【结果】T-A系统hicABprlF-yhaV缺失菌株对氯霉素的敏感性提高2–4倍,而且hicAB缺失菌株对血根碱的敏感性也提高2倍;1/2 MIC白屈菜红碱显著促进WT和ΔtolC菌株的ompXtolC基因表达,而血根碱抑制WT菌株tolC基因的表达;在ΔtolC菌株中1/2 MIC血根碱、白屈菜红碱、原阿片碱不同程度地促进ompXompC的基因表达,而对ompF存在着不同程度的抑制;1/2 MIC血根碱和白屈菜红碱显著促进WT和ΔtolC菌株的marR基因表达,并且血根碱还可以促进rpoS基因的表达。1/2 MIC原阿片碱显著降低WT菌株的yafN基因表达,而显著增加ΔtolC菌株的yafN基因表达水平;1/2 MIC血根碱、白屈菜红碱、原阿片碱不同程度地抑制WT菌株hicAhicB基因表达,而促进ΔtolC菌株hicAhicB的基因表达;1/2 MIC血根碱、白屈菜红碱、原阿片碱不同程度地促进WT和ΔtolC菌株的prlF基因表达,而血根碱显著抑制yhaV基因表达。【结论】II型T-A系统和外膜蛋白参与ExPEC对不同生物碱的应激反应,外膜蛋白TolC的完整性对于T-A系统参与细菌应激具有一定的影响,并且其机制可能存在不同。

    Abstract:

    [Background] Protopine, sanguinarine, and chelerythrine are main components of the new veterinary drugs Boluohui powder and Bopuzongjian powder in China, which have multiple pharmacological effects. [Objective] To preliminarily reveal the influence and mechanisms of the alkaloids from Macleaya cordata on the physiological activities of extraintestinal pathogenic Escherichia coli (ExPEC), we evaluated the effects of sub-inhibitory concentrations of sanguinarine, chelerythrine, and protopine on the expression of outer membrane protein (OMP), their regulatory genes, and type II toxin-antitoxin (T-A) systems of ExPEC. [Methods] We measured the minimum inhibitory concentrations (MICs) of protopine, sanguinarine, chelerythrine, and antibiotics on the ExPEC mutants with the deletion of yafON, hicAB, and prlF-yhaV. We then compared the expression of OMP genes (ompC,ompX,tolC, and ompF), their regulatory genes (acrR,rob,marR,rpoS, andsoxS), and type II T-A systems (yafON,hicAB, and prlF-yhaV) between WT and the tolC-deleted strain (ΔtolC) exposed to 1/2 MIC of protopine, sanguinarine, and chelerythrine. [Results] The sensitivity ofhicAB-and prlF-yhaV-deleted strains to chloramphenicol increased by 2–4 times, and that of hicAB-deleted strain to sanguinarine also increased by 2 times. Chelerythrine at 1/2 MIC significantly up-regulated the expression of ompX and tolC in WT and ΔtolC, while sanguinarine inhibited the expression of tolC in WT. Protopine, sanguinarine, and chelerythrine at 1/2 MIC up-regulated the expression of ompX and ompC while down-regulated that ofompF in ΔtolC. Sanguinarine and chelerythrine at 1/2 MIC significantly promoted the marR expression in WT and ΔtolC. Moreover, sanguinarine improved the expression of rpoS. Protopine at 1/2 MIC significantly lowered the expression of yafN in WT while significantly increased that in ΔtolC. Protopine, sanguinarine, and chelerythrine at 1/2 MIC down-regulated the expression of hicA and hicB in WT while up-regulated that in ΔtolC. They improved the expression of prlF in WT and ΔtolC, while sanguinarine significantly inhibited the expression of yhaV. [Conclusion] Type II T-A systems and OMPs participate in the responses of ExPEC to alkaloids. The integrity of OMPs (such as TolC) affects the role of T-A systems in bacterial responses to stress, the mechanisms of which remain unclear.

    参考文献
    [1] 侯博,曾建国.血根碱的生物学活性及博落回提取物在动物生产中的应用[J].动物营养学报, 2018, 30(2):413-420 Hou B, Zeng JG. Biolological activities of sanguinarine and application of Macleaya cordata extract in animal production[J]. Chinese Journal of Animal Nutrition, 2018, 30(2):413-420(in Chinese)
    [2] Gudev D, Ralcheva SP, Moneva P, Bonovska M, Valchev G, Valcheva A. Effect of supplemental Sangrovit on some biochemical indices and leukocytes phagocytic activity in growing pigs[J]. Archiva Zootechnica, 2004(7):123-134
    [3] Jesionek W, Fornal E, Majer-Dziedzic B, Móricz ÁM, Nowicky W, Choma IM. Investigation of the composition and antibacterial activity of UkrainTM drug using liquid chromatography techniques[J]. Journal of Chromatography A, 2016, 1429:340-347
    [4] Dzink JL, Socransky SS. Comparative in vitro activity of sanguinarine against oral microbial isolates[J]. Antimicrobial Agents and Chemotherapy, 1985, 27(4):663-665
    [5] Hamoud R, Reichling J, Wink M. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria[J]. Drug Metabolism Letters, 2014, 8(2):119-128
    [6] Hamoud R, Reichling J, Wink M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria[J]. Journal of Pharmacy and Pharmacology, 2015, 67(2):264-273
    [7] Obiang-Obounou BW, Kang OH, Choi JG, Keum JH, Kim SB, Mun SH, Shin DW, Park CB, Kim YG, Han SH, et al. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus[J]. Foodborne Pathogens and Disease, 2011, 8(8):869-874
    [8] Obiang-Obounou BW, Kang OH, Choi JG, Keum JH, Kim SB, Mun SH, Shin DW, Kim KW, Park CB, Kim YG, et al. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus[J]. The Journal of Toxicological Sciences, 2011, 36(3):277-283
    [9] Yang XJ, Miao F, Yao Y, Cao FJ, Yang R, Ma YN, Qin BF, Zhou L. In vitro antifungal activity of sanguinarine and chelerythrine derivatives against phytopathogenic fungi[J]. Molecules, 2012, 17(11):13026-13035
    [10] Tan C, Tang XB, Zhang X, Ding Y, Zhao ZQ, Wu B, Cai XW, Liu ZF, He QG, Chen HC. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China[J]. The Veterinary Journal, 2012, 192(3):483-488
    [11] Tang XB, Tan C, Zhang X, Zhao ZQ, Xia X, Wu B, Guo AZ, Zhou R, Chen HC. Antimicrobial resistances of extraintestinal pathogenic Escherichia coli isolates from swine in China[J]. Microbial Pathogenesis, 2011, 50(5):207-212
    [12] Xia XD, Meng JH, Zhao SH, Bodeis-Jones S, Gaines SA, Ayers SL, McDermott PF. Identification and antimicrobial resistance of extraintestinal pathogenic Escherichia coli from retail meats[J]. Journal of Food Protection, 2011, 74(1):38-44
    [13] Lyhs U, Ikonen I, Pohjanvirta T, Raninen K, Perko-Mäkelä P, Pelkonen S. Extraintestinal pathogenic Escherichia coli in poultry meat products on the Finnish retail market[J]. Acta Veterinaria Scandinavica, 2012, 54:64
    [14] Johnson TJ, Logue CM, Johnson JR, Kuskowski MA, Sherwood JS, Barnes HJ, DebRoy C, Wannemuehler YM, Obata-Yasuoka M, Spanjaard L, et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry[J]. Foodborne Pathogens and Disease, 2012, 9(1):37-46
    [15] Lee JH, Kim YG, Cho MH, Wood TK, Lee J. Transcriptomic analysis for genetic mechanisms of the factors related to biofilm formation in Escherichia coli O157:H7[J]. Current Microbiology, 2011, 62(4):1321-1330
    [16] Clinical and Laboratory Standards Institute (CLSI). M100-S25 performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement[S]. Clinical and Laboratory Standards Institute, 2015
    [17] Hou B, Meng XR, Zhang LY, Tan C, Jin H, Zhou R, Gao JF, Wu B, Li ZL, Liu M, et al. TolC promotes ExPEC biofilm formation and curli production in response to medium osmolarity[J]. BioMed Research International, 2014, 2014:574274
    [18] 许姝,张东,魏星,武琥琮,刘家奇,王亨,朱国强.肠道外致病性大肠杆菌外膜蛋白研究进展[J].中国预防兽医学报, 2019, 41(5):537-541 Xu S, Zhang D, Wei X, Wu HZ, Liu JQ, Wang H, Zhu GQ. Research advances in outer membrane proteins of enteropathogenic Escherichia coli[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(5):537-541(in Chinese)
    [19] Lin J, Huang SX, Zhang QJ. Outer membrane proteins:key players for bacterial adaptation in host niches[J]. Microbes and Infection, 2002, 4(3):325-331
    [20] Hong H, Patel DR, Tamm LK, Van Den Berg B. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel[J]. Journal of Biological Chemistry, 2006, 281(11):7568-7577
    [21] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiology and Molecular Biology Reviews, 2003, 67(4):593-656
    [22] Dupont M, James CE, Chevalier J, Pagès JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(9):3190-3198
    [23] Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic:a selective diffusion barrier in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2008, 6(12):893-903
    [24] Dupont M, Dé E, Chollet R, Chevalier J, Pagès JM. Enterobacter aerogenes OmpX, a cation-selective channel mar-and osmo-regulated[J]. FEBS Letters, 2004, 569(1/2/3):27-30
    [25] Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli[J]. Annual Review of Microbiology, 2011, 65:189-213
    [26] Beggs GA, Brennan RG, Arshad M. MarR family proteins are important regulators of clinically relevant antibiotic resistance[J]. Protein Science, 2020, 29(3):647-653
    [27] Jørgensen MG, Pandey DP, Jaskolska M, Gerdes K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and Archaea[J]. Journal of Bacteriology, 2009, 191(4):1191-1199
    [28] Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation[J]. The Biochemical Journal, 2014, 459(2):333-344
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯博,王晨燕,栗绍文,周伦江,车勇良,陈秋勇. 亚抑菌浓度博落回生物碱对ExPEC主要外膜蛋白和II型T-A系统表达的影响[J]. 微生物学通报, 2022, 49(6): 2183-2192

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 853
  • HTML阅读次数: 760
  • 引用次数: 0
历史
  • 收稿日期:2021-09-30
  • 录用日期:2021-12-08
  • 在线发布日期: 2022-06-05
文章二维码