科微学术

微生物学通报

鼠伤寒沙门菌VI型分泌系统效应因子Rhs生物学特性分析
作者:
基金项目:

国家重点研发计划(2016YFD0500703, 2018YFD0502006)


Biological characterization of Rhs effectors of type VI secretion system of Salmonella typhimurium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】细菌的VI型分泌系统作为杀死真核捕食者或原核竞争对手的“武器”,其杀伤作用是通过释放有毒物质即效应因子来实现。尽管已发现一些效应因子,但大多数效应因子的功能仍然未知。【目的】研究rhs基因编码的效应因子Rhs对鼠伤寒沙门菌生物学特性的影响。【方法】利用Red同源重组的方法构建鼠伤寒沙门菌rhs基因缺失株及相应的基因回补株通过试验分析比较亲本株与缺失株、回补株在生化特性、生物被膜形成、耐药性、细菌间竞争、抗血清补体杀菌能力、组织载菌量及感染小鼠后炎症因子IL-18、IL-1β释放量上的差异。【结果】效应因子Rhs不影响鼠伤寒沙门菌的生化代谢、生物被膜形成、耐药性及抗血清补体杀菌能力。细菌种间竞争试验中,基因缺失株CVCC541Δrhs1、CVCC541Δrhs2和CVCC541Δrhs1-2的竞争指数(competition index,CI)值分别为0.85、0.77和0.87,毒力均被轻度致弱。体内组织载菌量试验中,CVCC541Δrhs1、CVCC541Δrhs2和CVCC541Δrhs1-2基因缺失株在小鼠肝脏和脾脏中的细菌数均较亲本株明显下降(P<0.05);机体分泌IL-1β、IL-18的能力与鼠伤寒沙门菌效应因子Rhs具有相关性(P<0.05)。【结论】鼠伤寒沙门菌Rhs效应因子能在细菌间的竞争及细菌在宿主器官内的定殖上发挥作用,同时参与调控宿主体内炎性因子IL-1β和IL-18的分泌。

    Abstract:

    [Background] The type VI secretion system of bacteria acts as a weapon to kill eukaryotic predators or prokaryotic competitors by releasing toxins, known as effectors. Although some effectors have been identified, the functions of most effectors remain unknown. [Objective] To study the role of the effector Rhs encoded by rhs gene in Salmonella typhimurium. [Methods] The rhs-deleted mutants of Salmonella typhimuriumCVCC541 were constructed via Red recombination, including single gene deletion strains CVCC541Δrhs1 and CVCC541Δrhs2 and the double genes deletion strain CVCC541Δrhs1-2. Meanwhile, the corresponding gene complemented strains C-Δrhs1, C-Δrhs2 and C-Δrhs1-2 were constructed. The biochemical characteristics, biofilm formation, antibiotic resistance, competition between bacteria, bactericidal ability of complement in antiserum, dynamic distribution in vivo and the amounts of IL-18 and IL-1β released by host after infection were compared among the wild-type strain, gene-deleted strains and gene-complemented strains. [Results] Rhs did not affect the metabolism, biofilm formation, antibiotic resistance or complement bactericidal ability of Salmonella typhimurium. The competition index (CI) of CVCC541Δrhs1, CVCC541Δrhs2 and CVCC541Δrhs1-2 was 0.85, 0.77 and 0.87, respectively, which indicated slightly weakened virulence. Compared with the wild-type strain, CVCC541Δrhs1, CVCC541Δrhs2 and CVCC541Δrhs1-2 showed decreased number in the liver and spleen of mice (P<0.05). The host secretion of IL-1β and IL-18 was correlated with the Rhs of Salmonella typhimurium(P<0.05). [Conclusion] The Rhs effectors of Salmonella typhimuriumplay a role in the competition between bacteria, the colonization of bacteria in host organs, and the regulation of the secretion of inflammatory cytokines IL-1β and IL-18 in the host.

    参考文献
    [1] Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells[J]. Nature Reviews Microbiology, 2008, 6(1):53-66
    [2] Haselbeck AH, Panzner U, Im J, Baker S, Meyer CG, Marks F. Current perspectives on invasive nontyphoidal Salmonella disease[J]. Current Opinion in Infectious Diseases, 2017, 30(5):498-503
    [3] 石永琼.沙门氏菌的研究进展[J].世界最新医学信息文摘, 2016, 16(25):37-38, 41 Shi YQ. Advance on Salmonella[J]. World Latest Medicine Information, 2016, 16(25):37-38, 41(in Chinese)
    [4] Chassaing B, Cascales E. Antibacterial weapons:targeted destruction in the microbiota[J]. Trends in Microbiology, 2018, 26(4):329-338
    [5] Hayes CS, Aoki SK, Low DA. Bacterial contact-dependent delivery systems[J]. Annual Review of Genetics, 2010, 44:71-90
    [6] Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. PNAS, 2006, 103(5):1528-1533
    [7] Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus[J]. Science, 2006, 312(5779):1526-1530
    [8] Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-partner secretion:combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:148
    [9] Ho BT, Dong TG, Mekalanos JJ. A view to a kill:the bacterial type VI secretion system[J]. Cell Host&Microbe, 2014, 15(1):9-21
    [10] 陈君逸,邹清华.细菌Ⅵ型分泌系统的研究进展[J].医学研究杂志, 2013, 42(8):158-161 Chen JY, Zou QH. Advances in bacterial type Ⅵ secretion system-A review[J]. Journal of Medical Research, 2013, 42(8):158-161(in Chinese)
    [11] Kapitein N, Mogk A. Deadly syringes:type VI secretion system activities in pathogenicity and interbacterial competition[J]. Current Opinion in Microbiology, 2013, 16(1):52-58
    [12] Starsta M, Hammarlof DL, Waneskog M, et al. RHS-elements function as type II toxin-antitoxin modules that regulate intra-macrophage replication of Salmonella Typhimurium[J]. PLoS Genet. 2020, 16(2):e1008607.
    [13] Jackson AP, Thomas GH, Parkhill J, Thomson NR. Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement[J]. BMC Genomics, 2009, 10:584
    [14] Busby JN, Panjikar S, Landsberg MJ, Hurst MRH, Lott JS. The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device[J]. Nature, 2013, 501(7468):547-550
    [15] Koskiniemi S, Lamoureux J G, Nikolakakis K C, et al. Rhs proteins from diverse bacteria mediate intercellular competition[J]. PNAS. 2013, 110(17):7032-7037.
    [16] Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN, De Leon JA, Cunningham DA, Tran BQ, Low DA, Goodlett DR, et al. Genetically distinct pathways guide effector export through the type VI secretion system[J]. Molecular Microbiology, 2014, 92(3):529-542
    [17] Alcoforado Diniz J, Coulthurst SJ. Intra species competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein[J]. Journal of Bacteriology, 2015, 197(14):2350-2360
    [18] McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS. The cell surface expression of group 2 capsular polysaccharides in Escherichia coli:the role of KpsD, RhsA and a multi-protein complex at the pole of the cell[J]. Molecular Microbiology, 2006, 59(3):907-922
    [19] Sisto A, Cipriani MG, Morea M, Lonigro SL, Valerio F, Lavermicocca P. An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi[J]. Antonie Van Leeuwenhoek, 2010, 98(4):505-517
    [20] Kung VL, Khare S, Stehlik C, Bacon EM, Hughes AJ, Hauser AR. An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome[J]. PNAS, 2012, 109(4):1275-1280
    [21] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. PNAS, 2000, 97(12):6640-6645
    [22] 王圣花.副猪嗜血杆菌的药敏试验[J].山东畜牧兽医, 2018, 39(1):4-5 Wang SH. Drug sensitivity test of Haemophilus parasuis[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2018, 39(1):4-5(in Chinese)
    [23] 薛涛,陈先亮,高崧,刘秀梵.产志贺毒素大肠杆菌O18 XZ113株主要毒力基因eaeA、stx2、ehxA突变株的构建及其对小鼠的致病作用[J].微生物学报, 2011, 51(12):1655-1662 Xue T, Chen XL, Gao S, Liu XF. Construction of the XZ113涔敥敡????偘潚琱攱渳璔楳整牸′?卡??匠捘桚攱渱挳殔??偸??噭極汴慡祮獴慳渠敯????卅敃愠浏漱游攠????″?敡湮杤??偨??敲琠?慡汴???汥潮獩瑣物楴摹椠畩浮?摭楩晣晥楛捊楝氮攠?瑣潴硡椠湍?楣湲摯畢捩敯摬?楧湩晣污愠浓浩慮瑩楣潡測?愲渰搱?椬渠琵攱猨琱椲温愺氱?椵渵樭由父礶′愨物敮?浃敨摩楮慥瑳敥搩?扢祲 ̄瑛栲攴?椠渨晾氬愠涄淑愬率濃洰攬孎?崬???慨獏琬牵澉敳測瓹攉牰漬泄漏柢礬?‐水ぉ?は???????????呼???五?旊?部分生物学特性[J].畜牧兽医学报, 2016, 47(11):2274-2279 Jin J, Zhang LH, Wen XT, Li Y, Dai K, Zhou P, Zhao YJ, Cao SJ, Huang XB, Wu R, et al. Construction and characterization of a Haemophilus parasuis potD mutant strain[J]. Chinese Journal of Animal and Veterinary Sciences, 2016, 47(11):2274-2279(in Chinese)
    [25] 王佐强,姚玉峰.沙门菌效应蛋白对宿主细胞的影响及分子机制[J].微生物学报, 2018, 58(7):1158-1166 Wang ZQ, Yao YF. Roles of Salmonella effectors in manipulating host cell function[J]. Acta Microbiologica Sinica, 2018, 58(7):1158-1166(in Chinese)
    [26] Dong TG, Dong SQ, Catalano C, Moore R, Liang XY, Mekalanos JJ. Generation of reactive oxygen species by lethal attacks from competing microbes[J]. PNAS, 2015, 112(7):2181-2186
    [27] Poole SJ, Diner EJ, Aoki SK, Braaten BA, t'Kint De Roodenbeke C, Low DA, Hayes CS. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems[J]. PLoS Genetics, 2011, 7(8):e1002217
    [28] 邵峰.病原细菌和宿主天然免疫系统相互拮抗的机制研究[J].中国基础科学, 2012, 14(1):7-13. Shao F. Study on the antagonistic mechanism between pathogenic bacteria and host natural immune system[J]. China basic science, 2012, 14(1):7-13(in Chinese)
    [29] Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S. Salmonella exploits caspase-1 to colonize peyer's patches in a murine typhoid model[J]. Journal of Experimental Medicine, 2000, 192(2):249-258
    [30] Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1[J]. PNAS, 1999, 96(5):2396-2401
    [31] Schroeder GN, Jann NJ, Hilbi H. Intracellular type III secretion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death[J]. Microbiology, 2007, 153(9):2862-2876
    [32] Ng J, Hirota SA, Gross O, Li Y, Ulke-Le
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董震,陈启伟,吴锦燕,尚佑军,兰喜,刘永生. 鼠伤寒沙门菌VI型分泌系统效应因子Rhs生物学特性分析[J]. 微生物学通报, 2022, 49(6): 2160-2173

复制
分享
文章指标
  • 点击次数:275
  • 下载次数: 950
  • HTML阅读次数: 999
  • 引用次数: 0
历史
  • 收稿日期:2021-08-30
  • 录用日期:2021-10-20
  • 在线发布日期: 2022-06-05
文章二维码