科微学术

微生物学通报

耐热克鲁维酵母在葡萄酒酿造中的研究进展
作者:
基金项目:

宁夏回族自治区重大研发计划(2022BBF02015);国家自然科学基金(U21A20269,32160555);财政部和农业农村部:国家现代农业产业技术体系(CARS-29)


Research progress of Lachancea thermotolerans in winemaking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    耐热克鲁维酵母(Lachancea thermotolerans)是一种具有优良酿造学特性的非酿酒酵母(non-Saccharomyces cevevisiae),近年来由于其对葡萄酒的发酵进程及香气、滋味等感官特性均有着重要影响而受到越来越多的关注。耐热克鲁维酵母突出的特点表现为高产乳酸、甘油、2-苯乙醇及乙酯类香气成分,低产乙醇及挥发酸类物质,并且相关研究显示不同耐热克鲁维酵母发酵对葡萄酒的影响存在明显的菌株特异性。文章围绕耐热克鲁维酵母的菌株多样性、其对葡萄酒质量的影响及在混合发酵中的应用等方面进行综述,以期为本土耐热克鲁维酵母菌株性状的筛选、产酸及产香机制的解析提供参考依据,促进我国酿酒微生物种质资源的良性发展。

    Abstract:

    Lachancea thermotolerans, a species of non-Saccharomyces yeast, has attracted increasing attention because of its excellent enological characteristics such as enhancing aroma and taste. It is characterized by high production of lactic acid, glycerol, 2-phenylethanol, and ethyl esters while low production of ethanol and volatile acids during the fermentation of wine. The available studies have proved the distinct performance among different strains of L. thermotolerans in fermentation. We reviewed the studies about the strain diversity, effect on wine quality, and application in co-fermentation of L. thermotolerans. This review provides a basis for screening the traits and exploring the mechanism of acid and aroma production of the indigenous L. thermotolerans, which will promote the sound development of microbial germplasm resources for winemaking in China.

    参考文献
    [1] 卜光明, 周化斌, 周茂洪, 杨海龙. 酿造酒中非酿酒酵母的研究进展[J]. 食品工业科技, 2019, 40(14): 346-352 Bu GM, Zhou HB, Zhou MH, Yang HL. Research progress on the non-Saccharomyces in the brewing wine fermentation[J]. Science and Technology of Food Industry, 2019, 40(14): 346-352 (in Chinese)
    [2] 战吉宬, 曹梦竹, 游义琳, 黄卫东. 非酿酒酵母在葡萄酒酿造中的应用[J]. 中国农业科学, 2020, 53(19): 4057-4069 Zhan JC, Cao MZ, You YL, Huang WD. Research advance on the application of non-Saccharomyces in winemaking[J]. Scientia Agricultura Sinica, 2020, 53(19): 4057-4069 (in Chinese)
    [3] Boulton RB, Singleton VL, Bisson LF, Kunkee RE. Principles and Practices of Winemaking[M]. Boston, MA: Springer, 1999
    [4] Palacios VM, Caro I, Pérez L. Application of ion exchange techniques to industrial process of must acidification[J]. Separation and Purification Methods, 2001, 30(1): 143-156
    [5] Benito S. The impacts of Lachancea thermotolerans yeast strains on winemaking[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6775-6790
    [6] 覃秋杏, 韩小雨, 黄卫东, 战吉宬, 游义琳. 非酿酒酵母产生的β-葡萄糖苷酶在发酵酒中的应用[J/OL]. 食品科学, 2021. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1614.008.html Tan XQ, Han XY, Huang WD, Zhan JC, You YL. Application of β-glucosidase produced by non-Saccharomyces cerevisiae in fermented wine[J/OL]. Food Science, 2021. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1614.008.html (in Chinese)
    [7] 谭凤玲, 王宝石, 胡培霞, 刘成功, 张明霞. 非酿酒酵母在葡萄酒混菌发酵中的应用及其挑战[J]. 食品与发酵工业, 2020, 46(22): 282-286 Tan FL, Wang BS, Hu PX, Liu CG, Zhang MX. Application and challenge of non-Saccharomyces cerevisiae yeast in the mixed fermentation of fruit wine[J]. Food and Fermentation Industries, 2020, 46(22): 282-286 (in Chinese)
    [8] 杨诗妮, 叶冬青, 贾红帅, 张文静, 宋育阳, 刘延琳. 本土戴尔有孢圆酵母在葡萄酒酿造中的应用潜力[J]. 食品科学, 2019, 40(18): 108-115 Yang SN, Ye DQ, Jia HS, Zhang WJ, Song YY, Liu YL. Oenological potential of indigenous Torulaspora delbrueckii for winemaking[J]. Food Science, 2019, 40(18): 108-115 (in Chinese)
    [9] 张文静, 杨诗妮, 杜爽, 姜娇, 叶冬青, 刘延琳. 本土毕赤克鲁维酵母与酿酒酵母混合发酵葡萄酒的增香潜力分析[J]. 食品科学, 2020, 41(12): 84-90 Zhang WJ, Yang SN, Du S, Jiang J, Ye DQ, Liu YL. Potential application of mixed starter cultures of indigenous Pichia kluyveri and Saccharomyces cerevisiae to wine aroma enhancement[J]. Food Science, 2020, 41(12): 84-90 (in Chinese)
    [10] 董琦楠, 叶冬青, 梁艳英, 姜娇, 刘延琳. 高产酸本土非酿酒酵母菌株的筛选及发酵性能研究[J]. 中国酿造, 2021, 40(8): 70-75 Dong QN, Ye DQ, Liang YY, Jiang J, Liu YL. Screening and fermentation performance of native non-Saccharomyces cerevisiae with high lactic acid production[J]. China Brewing, 2021, 40(8): 70-75 (in Chinese)
    [11] 冯文倩, 王倩, 刘延琳, 宋育阳, 姜娇, 伍新宇, 秦义. 低产乙醇本土有孢汉逊酵母的筛选及酿造特性[J]. 食品与发酵工业, 2021, 47(21): 9-17 Feng WQ, Wang Q, Liu YL, Song YY, Jiang J, Wu XY, Qin Y. Screening and oenological properties of Hanseniaspora strains with low ethanol yield[J]. Food and Fermentation Industries, 2021, 47(21): 9-17 (in Chinese)
    [12] 郝爱玲, 冯莉, 秦义, 宋育阳, 刘延琳. 降解柠檬酸酵母菌的筛选及其发酵性能研究[J]. 中国食品学报, 2018, 18(11): 72-80 Hao AL, Feng L, Qin Y, Song YY, Liu YL. Studies on selection and fermentation characteristics of citric acid-degradation yeast[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(11): 72-80 (in Chinese)
    [13] Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae[J]. Food Microbiology, 2011, 28(5): 873-882
    [14] Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R. Non-conventional yeast species for lowering ethanol content of wines[J]. Frontiers in Microbiology, 2016, 7: 642
    [15] Benito S, Hofmann T, Laier M, Lochbühler B, Schüttler A, Ebert K, Fritsch S, Röcker J, Rauhut D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae[J]. European Food Research and Technology, 2015, 241(5): 707-717
    [16] Porter TJ, Divol B, Setati ME. Investigating the biochemical and fermentation attributes of Lachancea species and strains: deciphering the potential contribution to wine chemical composition[J]. International Journal of Food Microbiology, 2019, 290: 273-287
    [17] Kapsopoulou K, Mourtzini A, Anthoulas M, Nerantzis E. Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae[J]. World Journal of Microbiology and Biotechnology, 2007, 23(5): 735-739
    [18] 黄英子. 冰酒发酵过程中酵母菌的多样性及动态变化研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2013 Huang YZ. Diversity and dynamic change of yeasts during icewine fermentation[D]. Yangling: Master’s Thesis of Northwest A&F University, 2013 (in Chinese)
    [19] Porter TJ, Divol B, Setati ME. Lachancea yeast species: origin, biochemical characteristics and oenological significance[J]. Food Research International, 2019, 119: 378-389
    [20] Lachance MA, Kurtzman CP. Chapter 41-Lachancea Kurtzman(2003)[A]//Kurtzman CP, Fell JW, Boekhout T. The Yeasts[M]. 5th ed. London: Elsevier, 2011: 511-519
    [21] 杨婕. 基于耐热克鲁维酵母混菌发酵对提升冰酒感官品质的影响效应[D]. 兰州: 甘肃农业大学硕士学位论文, 2020 Yang J. Effect of Lachancea thermotolerans mixed fermentation on improving sensory quality of ice wine[D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2020 (in Chinese)
    [22] De Anchieta Câmara Jr A, Maréchal PA, Tourdot-Maréchal R, Husson F. Dehydration stress responses of yeasts Torulaspora delbrueckii, Metschnikowia pulcherrima and Lachancea thermotolerans: effects of glutathione and trehalose biosynthesis[J]. Food Microbiology, 2019, 79: 137-146
    [23] Banilas G, Sgouros G, Nisiotou A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates[J]. Microbiological Research, 2016, 193: 1-10
    [24] Hranilovic A, Gambetta JM, Schmidtke L, Boss PK, Grbin PR, Masneuf-Pomarede I, Bely M, Albertin W, Jiranek V. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation[J]. Scientific Reports, 2018, 8: 14812
    [25] Freel KC, Friedrich A, Hou J, Schacherer J. Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans[J]. Genome Biology and Evolution, 2014, 6(10): 2586-2594
    [26] Gerstein AC, Jean-Sébastien M. Small is the new big: assessing the population structure of microorganisms[J]. Molecular Ecology, 2011, 20(21): 4385-4387
    [27] Binati RL, Innocente G, Gatto V, Celebrin A, Polo M, Felis GE, Torriani S. Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking[J]. Food Research International, 2019, 122: 432-442
    [28] Escribano R, González-Arenzana L, Portu J, Garijo P, López-Alfaro I, López R, Santamaría P, Gutiérrez AR. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones[J]. Journal of Applied Microbiology, 2018, 124(6): 1521-1531
    [29] Gatto V, Binati RL, Lemos WJF Jr, Basile A, Treu L, de Almeida OGG, Innocente G, Campanaro S, Torriani S. New insights into the variability of lactic acid production in Lachancea thermotolerans at the phenotypic and genomic level[J]. Microbiological Research, 2020, 238: 126525
    [30] Malpertuy A, Llorente B, Blandin G, Artiguenave F, Wincker P, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 10. Kluyveromyces thermotolerans[J]. FEBS Letters, 2000, 487(1): 61-65
    [31] Du Plessis HW, Du Toit M, Hoff JW, Hart RS, Ndimba BK, Jolly NP. Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation[J]. South African Journal of Enology & Viticulture, 2017, 38(2): 46-63
    [32] Benito Á, Calderón F, Palomero F, Benito S. Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production[J]. Molecules: Basel, Switzerland, 2015, 20(6): 9510-9523
    [33] Benito Á, Calderón F, Benito S. Combined use of S. pombe and L. thermotolerans in winemaking. beneficial effects determined through the study of wines’ analytical characteristics[J]. Molecules: Basel, Switzerland, 2016, 21(12): 1744
    [34] Shekhawat K, Porter TJ, Bauer FF, Setati ME. Employing oxygen pulses to modulate Lachancea thermotoleransSaccharomyces cerevisiae Chardonnay fermentations[J]. Annals of Microbiology, 2018, 68(2): 93-102
    [35] Hranilovic A, Albertin W, Capone DL, Gallo A, Grbin PR, Danner L, Bastian SEP, Masneuf-Pomarede I, Coulon J, Bely M, et al. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines[J]. Food Chemistry, 2021, 349: 129015
    [36] Morata A, Bañuelos MA, Vaquero C, Loira I, Cuerda R, Palomero F, González C, Suárez-Lepe JA, Wang J, Han SY, et al. Lachancea thermotolerans as a tool to improve pH in red wines from warm regions[J]. European Food Research and Technology, 2019, 245(4): 885-894
    [37] Bañuelos MA, Loira I, Escott C, Del Fresno JM, Morata A, Sanz PD, Otero L, Suárez-Lepe JA. Grape processing by high hydrostatic pressure: effect on use of non-Saccharomyces in must fermentation[J]. Food and Bioprocess Technology, 2016, 9(10): 1769-1778
    [38] Kapsopoulou K, Kapaklis A, Spyropoulos H. Growth and fermentation characteristics of a strain of the wine yeast Kluyveromyces thermotolerans isolated in Greece[J]. World Journal of Microbiology and Biotechnology, 2005, 21(8/9): 1599-1602
    [39] Benito Á, Calderón F, Benito S. The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans-effect on the anthocyanin wine composition[J]. Molecules: Basel, Switzerland, 2017, 22(5): 739
    [40] Benito Á,7(1): 79-87 Wang J, Li M, Gao PP, Zhao M, Yang J. Application potential of Lachancea thermotolerans and Torulaspora delbrueckii on ice wine fermentation[J]. Food and Fermentation Industries, 2021, 47(1): 79-87 (in Chinese)
    [73] Vilela A. Lachancea thermotolerans, the non-Saccharomyces yeast that reduces the volatile acidity of wines[J]. Fermentation, 2018, 4(3): 56
    [74] Petitgonnet C, Klein GL, Roullier-Gall C, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Julien-David D, Alexandre H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome[J]. Food Microbiology, 2019, 83: 122-133
    [75] Cot M, Loret MO, François J, Benbadis L. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol[J]. FEMS Yeast Research, 2007, 7(1): 22-32
    [76] Nissen P, Nielsen D, Arneborg N. Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism[J]. Yeast: Chichester, England, 2003, 20(4): 331-341
    [77] Nissen P, Nielsen D, Arneborg N. The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures[J]. Applied Microbiology and Biotechnology, 2004, 64(4): 543-550
    [78] Luyt NA, Beaufort S, Divol B, Setati ME, Taillandier P, Bauer FF. Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation[J]. World Journal of Microbiology & Biotechnology, 2021, 37(11): 186
    [79] Albergaria H, Francisco D, Gori K, Arneborg N, Gírio F. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains[J]. Applied Microbiology and Biotechnology, 2010, 86(3): 965-972
    [80] Branco P, Francisco D, Monteiro M, Almeida MG, Caldeira J, Arneborg N, Prista C, Albergaria H. Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2017, 101(1): 159-171
    [81] Peng CT, Andersen B, Arshid S, Larsen MR, Albergaria H, Lametsch R, Arneborg N. Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans[J]. FEMS Microbiology Ecology, 2019, 95(9): fiz126e sensory profile of wines from warm areas[J]. Frontiers in Microbiology, 2021, 12: 656262
    [51] Morales ML, Fierro-Risco J, Ríos-Reina R, Ubeda C, Paneque P. Influence of Saccharomyces cerevisiae and Lachancea thermotolerans co-inoculation on volatile profile in fermentations of a must with a high sugar content[J]. Food Chemistry, 2019, 276: 427-435
    [52] Nally MC, Ponsone ML, Pesce VM, Toro ME, Vazquez F, Chulze S. Evaluation of behaviour of Lachancea thermotolerans biocontrol agents on grape fermentations[J]. Letters in Applied Microbiology, 2018, 67(1): 89-96
    [53] Lubbers S, Verret C, Voilley A. The effect of glycerol on the perceived aroma of a model wine and a white wine[J]. LWT - Food Science and Technology, 2001, 34(4): 262-265
    [54] Vaquero C, Loira I, Bañuelos MA, Heras JM, Cuerda R, Morata A. Industrial performance of several Lachancea thermotolerans strains for pH control in white wines from warm areas[J]. Microorganisms, 2020, 8(6): 830
    [55] 杨华峰, 杜文华, 刘忠义. 初始含糖量和二氧化硫对冰红酒挥发酸的影响[J]. 食品工业科技, 2013, 34(3): 177-179 Yang HF, Du WH, Liu ZY. Effect of original sugar content and sulfur dioxide on volatile acid of the red icewine[J]. Science and Technology of Food Industry, 2013, 34(3): 177-179 (in Chinese)
    [56] Toh DWK, Chua JY, Lu YY, Liu SQ. Evaluation of the potential of commercial non-Saccharomyces yeast strains of Torulaspora delbrueckii and Lachancea thermotolerans in beer fermentation[J]. International Journal of Food Science & Technology, 2020, 55(5): 2049-2059
    [57] Escott C, Morata A, Ricardo-Da-Silva JM, Callejo MJ, González M, Suarez-Lepe JA. Effect of Lachancea thermotolerans on the formation of polymeric pigments during sequential fermentation with schizosaccharosmyces pombe and Saccharomyces cerevisiae[J]. Molecules: Basel, Switzerland, 2018, 23(9): 2353
    [58] Shekhawat K, Bauer FF, Setati ME. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2479-2491
    [59] Hayaishi O, Sutton WB. Enzymatic oxygen fixation into acetate concomitant with the enzymatic decarboxylation of L-lactate[J]. Journal of the American Chemical Society, 1957, 79(17): 4809-4810
    [60] Lyu JH, Chen S, Nie Y, Xu Y, Tang K. Aroma release during wine consumption: factors and analytical approaches[J]. Food Chemistry, 2021, 346: 128957
    [61] Balikci EK, Tanguler H, Jolly NP, Erten H. Influence of Lachancea thermotolerans on cv. emir wine fermentation[J]. Yeast: Chichester, England, 2016, 33(7): 313-321
    [62] Benito Á, Calderón F, Palomero F, Benito S. Quality and composition of airén wines fermented by sequential inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae[J]. Food Technology and Biotechnology, 2016, 54(2): 135-144
    [63] Shekhawat K, Patterton H, Bauer FF, Setati ME. RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed- culture fermentations under anaerobic conditions[J]. BMC Genomics, 2019, 20(1): 145
    [64] Hranilovic A, Li S, Boss PK, Bindon K, Ristic R, Grbin PR, Van Der Westhuizen T, Jiranek V. Chemical and sensory profiling of Shiraz wines co-fermented with commercial non-Saccharomyces inocula[J]. Australian Journal of Grape and Wine Research, 2018, 24(2): 166-180
    [65] Chen K, Escott C, Loira I, Del Fresno JM, Morata A, Tesfaye W, Calderon F, Suárez-Lepe JA, Han SY, Benito S. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: influence on colour, aroma and sensorial properties of young wines[J]. Food Microbiology, 2018, 69: 51-63
    [66] Domizio P, Liu Y, Bisson LF, Barile D. Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine[J]. Food Microbiology, 2014, 43: 5-15
    [67] Božič JT, Butinar L, Albreht A, Vovk I, Korte D, Vodopivec BM. The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour: a laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption[J]. LWT, 2020, 123: 109072
    [68] Zhang PZ, Ma W, Meng YQ, Zhang YF, Jin G, Fang ZX. Wine phenolic profile altered by yeast: mechanisms and influences[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4): 3579-3619
    [69] Escribano-Viana R, Portu J, Garijo P, López R, Santamaría P, López-Alfaro I, Gutiérrez AR, González-Arenzana L. Effect of the sequential inoculation of non-Saccharomyces/Saccharomyces on the anthocyans and stilbenes composition of tempranillo wines[J]. Frontiers in Microbiology, 2019, 10: 773
    [70] 王玉华, 盛文军, 李敏, 米兰, 蒋玉梅, 王婧. 耐热克鲁维酵母和粟酒裂殖酵母顺序接种发酵对美乐干红葡萄酒品质的影响[J]. 食品科学, 2019, 40(8): 102-111 Wang YH, Sheng WJ, Li M, Mi L, Jiang YM, Wang J. Effect of sequential fermentation with Lachancea thermotolerans and Schizosaccharomyces pombe on the quality of merlot dry red wine[J]. Food Science, 2019, 40(8): 102-111 (in Chinese)
    [71] 杨婕, 王玉华, 米兰, 李爱霞, 王婧. 耐热克鲁维酵母与酿酒酵母顺序接种发酵对霞多丽干白葡萄酒感官品质的影响[J]. 食品与发酵工业, 2019, 45(18): 144-154 Yang J, Wang YH, Mi L, Li AX, Wang J. Effects of sequential fermentation of Lachancea thermotolerans and Saccharomyces cerevisiae on the quality of Chardonnay dry white wine[J]. Food and Fermentation Industries, 2019, 45(18): 144-154 (in Chinese)
    [72] 王婧, 李敏, 高娉娉, 赵美, 杨婕. 耐热克鲁维酵母和戴尔有孢圆酵母在冰葡萄酒酿造中的应用潜力[J]. 食品与发酵工业, 2021, 4
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董琦楠,李莹,叶冬青,刘延琳. 耐热克鲁维酵母在葡萄酒酿造中的研究进展[J]. 微生物学通报, 2022, 49(5): 1941-1954

复制
分享
文章指标
  • 点击次数:456
  • 下载次数: 885
  • HTML阅读次数: 1371
  • 引用次数: 0
历史
  • 收稿日期:2021-07-19
  • 录用日期:2021-12-29
  • 在线发布日期: 2022-05-05
文章二维码