科微学术

微生物学通报

嗜黏蛋白阿克曼菌在疾病中的保护性作用及机制研究进展
作者:
基金项目:

国家重点研发计划(2021YFC2009101-X,2020YFC2005305,2018YFC2002100)


Protective effect of Akkermansia muciniphila in diseases and the mechanisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [99]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    嗜黏蛋白阿克曼菌(Akkermansia muciniphilaAkk)是人类肠道正常存在的常见共生菌,丰度约占肠菌的1%−3%。Akk是极少数已知在肠道平衡态下仍能引发T细胞依赖性免疫作用的肠菌,提示该菌可能参与正常肠道免疫耐受过程。疾病和模型动物研究表明,Akk在改善宿主代谢功能和免疫应答方面具有重要作用,近期引起广泛关注。目前相关研究大多集中在Akk与疾病的相关性上,尚无系统阐述其作用机制的研究。本文对Akk与人体几大重要系统疾病和免疫之间的关联及其作用机制进行论述,以期为Akk的有效利用提供证据和思路。

    Abstract:

    The intestinal symbiotic Akkermansia muciniphila comprises 1%–3% of gut microbiota, which induces T cell-dependent immune response during intestinal homeostasis. Thus, it may be involved in immune tolerance of normal gut. Experiments on disease and model animals have proven the vital role of this bacterial species in improving metabolic functions and immune response of the hosts, which has attracted the interests of scholars. Previous studies mainly focused on the correlation between A. muciniphila and diseases, but the mechanisms have not been systematically explored. This study aims to discuss the relationships of A. muciniphila with diseases in major human systems and immunity and the mechanisms, which is expected to provide evidence and routes for effective utilization of this bacterial species.

    参考文献
    [1] Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 5): 1469-1476
    [2] Lyu QB, Li SH, Zhang Y, Wang YC, Peng YZ, Zhang XX. A thousand metagenome-assembled genomes of Akkermansia reveal new phylogroups and geographical and functional variations in human gut[J]. bioRxiv, 2020. DOI:10.1101/2020.09.10.292292
    [3] van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, Chain PSG, Woyke T, Palva A, de Vos WM, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes[J]. PLoS One, 2011, 6(3): e16876
    [4] Ouwerkerk JP, Koehorst JJ, Schaap PJ, Ritari J, Paulin L, Belzer C, De Vos WM. Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut[J]. Genome Announcements, 2017, 5(1): e01098-e01016
    [5] Ogata Y, Sakamoto M, Ohkuma M, Hattori M, Suda W. Complete genome sequence of Akkermansia muciniphila JCM 30893, isolated from feces of a healthy Japanese male[J]. Microbiology Resource Announcements, 2020, 9(7): e01543-e01519
    [6] Karcher N, Nigro E, Puncochár M, Blanco-Míguez A, Ciciani M, Manghi P, Zolfo M, Cumbo F, Manara S, Golzato D, et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly[J]. Genome Biology, 2021, 22(1): 209
    [7] Liu XY, Zhao F, Liu H, Xie YT, Zhao D, Li CB. Transcriptomics and metabolomics reveal the adaption of Akkermansia muciniphila to high mucin by regulating energy homeostasis[J]. Scientific Reports, 2021, 11: 9073
    [8] Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions[J]. Microbial Pathogenesis, 2017, 106: 171-181
    [9] Rodríguez C, Romero E, Garrido-Sanchez L, Alcaín-Martínez G, Andrade RJ, Taminiau B, Daube G, García-Fuentes E. Microbiota insights in clostridium difficile infection and inflammatory bowel disease[J]. Gut Microbes, 2020, 12(1): 1725220
    [10] Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos V, Smidt H, Belzer C, de Vos WM. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle[J]. Applied and Environmental Microbiology, 2017, 83(18): e01014-e01017
    [11] Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J]. PLoS One, 2017, 12(3): e0173004
    [12] Ouwerkerk JP, van der Ark KCH, Davids M, Claassens NJ, Finestra TR, de Vos WM, Belzer C. Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer[J]. Applied and Environmental Microbiology, 2016, 82(23): 6983-6993
    [13] van der Ark KCH, Nugroho ADW, Berton-Carabin C, Wang C, Belzer C, de Vos WM, Schroen K. Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions[J]. Food Research International, 2017, 102: 372-379
    [14] Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases[J]. Current Opinion in Pharmacology, 2019, 49: 1-5
    [15] van der Ark K. Metabolic characterization and viable delivery of Akkermansia muciniphila for its future application[D]. Wageningen University and Research, 2018. DOI: 10.18174/427507
    [16] Hussein LA. Novel prebiotics and next-generation probiotics: opportunities and challenges[A]//Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases[M]. Amsterdam: Elsevier, 2022: 431-457
    [17] van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation[J]. Microbial Biotechnology, 2018, 11(3): 476-485
    [18] Ashrafian F, Behrouzi A, Shahriary A, Badi SA, Davari M, Khatami S, Jamnani FR, Fateh A, Vaziri F, Siadat S. Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction[J]. Gastroenterology and Hepatology from Bed to Bench, 2019, 12: 163-168
    [19] Wlodarska M, Luo CW, Kolde R, D’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation[J]. Cell Host & Microbe, 2017, 22(1): 25-37.e6
    [20] El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches?[J]. Environmental Science and Pollution Research International, 2021, 28(36): 49343-49361
    [21] Kashtanova DA, Popenko AS, Tkacheva ON, Tyakht AB, Alexeev DG, Boytsov SA. Association between the gut microbiota and diet: fetal life, early childhood, and further life[J]. Nutrition, 2016, 32(6): 620-627
    [22] Guo M, Miao MH, Wang YZ, Duan MM, Yang F, Chen Y, Yuan W, Zheng HJ. Developmental differences in the intestinal microbiota of Chinese 1-year-old infants and 4-year-old children[J]. Scientific Reports, 2020, 10: 19470
    [23] Zinina TA, Tiselko AV, Yarmolinskaya MI. The role of intestinal microbiota in the development of complications in pregnant women with gestational diabetes[J]. Journal of Obstetrics and Womenʼs Diseases, 2020, 69(4): 41-50
    [24] Ma C, Gao QK, Zhang WH, Azad MAK, Kong XF. Alterations in the blood parameters and fecal microbiota and metabolites during pregnant and lactating stages in Bama mini pigs as a model[J]. Mediators of Inflammation, 2020, 2020: 8829072
    [25] Ribo S, Sánchez-Infantes D, Martinez-Guino L, García-Mantrana I, Ramon-Krauel M, Tondo M, Arning E, Nofrarías M, Osorio-Conles Ó, Fernández-Pérez A, et al. Increasing breast milk betaine modulates Akkermansia abundance in mammalian neonates and improves long-term metabolic health[J]. Science Translational Medicine, 2021, 13(587): eabb0322
    [26] Morais J, Marques C, Faria A, Teixeira D, Barreiros-Mota I, Durão C, Araújo J, Ismael S, Brito S, Cardoso M, et al. Influence of human milk on very preterms’ gut microbiota and alkaline phosphatase activity[J]. Nutrients, 2021, 13(5): 1564
    [27] Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release[J]. Frontiers in Physiology, 2019, 10: 428
    [28] Gu W, Wang YF, Zeng LX, Dong JC, Bi Q, Yang XX, Che YY, He S, Yu J. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet[J]. Biomedicine & Pharmacotherapy, 2020, 125: 109910
    [29] Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity[J]. Gut Microbes, 2012, 3(4): 279-288
    [30] Zheng YJ, Gou XW, Zhang LL, Gao HJ, Wei Y, Yu XT, Pang B, Tian JX, Tong XL, Li M. Interactions between gut microbiota, host, and herbal medicines: a review of new insights into the pathogenesis and treatment of type 2 diabetes[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 360
    [31] 田滋润, 王烨, 韩雪, 王蟾月, 王晓晓, 杨浩, 朱曼丽, 李琳琳. 高脂诱导下胰岛素抵抗和非胰岛素抵抗小鼠糖脂代谢及肠道AKK菌的变化[J]. 新疆医科大学学报, 2019, 42(8): 984-987, 993 Tian ZR, Wang Y, Han X, Wang CY, Wang XX, Yang H, Zhu ML, Li LL. Changes of glucose and lipid metabolism and intestinal AKK bacteria in mice with insulin resistance and non-insulin resistance induced by hyperlipidemia[J]. Journal of Xinjiang Medical University, 2019, 42(8): 984-987, 993 (in Chinese)
    [32] 沈男, 刘毅, 盖中涛. 嗜黏蛋白阿克曼氏菌及其在肥胖机制中的研究进展[J]. 基础医学与临床, 2018, 38(10): 1475-1479 Shen N, Liu Y, Gai ZT. Research progress of Akkermansia muciniphila and its mechanism in obesity[J]. Basic & Clinical Medicine, 2018, 38(10): 1475-1479 (in Chinese)
    [33] Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5): 727-735
    [34] Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study[J]. Nature Medicine, 2019, 25(7): 1096-1103
    [35] Ou ZH, Deng LL, Lu Z, Wu FF, Liu WT, Huang DQ, Peng YZ. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease[J]. Nutrition & Diabetes, 2020, 10: 12
    [36] Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. PNAS, 2013, 110(22): 9066-9071
    [37] Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436
    [38] Zhang J, Ni YQ, Qian LL, Fang QC, Zheng TT, Zhang ML, Gao QM, Zhang Y, Ni JC, Hou XH, et al. Decreased abundance of Akkermansia muciniphila leads to the impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes[J]. Advanced Science: Weinheim, Baden-Wurttemberg, Germany, 2021, 8(16): e2100536
    [39] Bodogai M, O’Connell J, Kim K, Kim Y, Moritoh K, Chen C, Gusev F, Vaughan K, Shulzhenko N, Mattison JA, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells[J]. Science Translational Medicine, 2018, 10(467): eaat4271
    [40] Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, Roeselers G. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids[J]. mBio, 2014, 5(4): e01438-e01414
    [41] Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, Hadifar S, Yaghoubfar R, Ahmadi Badi S, Khatami S, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice[J]. Frontiers in Microbiology, 2019, 10: 2155
    [42] Gasmi A, Mujawdiya PK, Pivina L, Doşa A, Semenova Y, Benahmed AG, Bjørklund G. Relationship between gut microbiota, gut hyperpermeability and obesity[J]. Current Medicinal Chemistry, 2021, 28(4): 827-839
    [43] Bargut TCL, Aguila MB, Mandarim-De-Lacerda CA. Brown adipose tissue: updates in cellular and molecular biology[J]. Tissue and Cell, 2016, 48(5): 452-460
    [44] Rao Y, Kuang ZQ, Li C, Guo SY, Xu YH, Zhao DD, Hu YT, Song BB, Jiang Z, Ge ZH, et al. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis[J]. Gut Microbes, 2021, 13(1): 1927633
    [45] Wang LJ, Tang L, Feng YM, Zhao SY, Han M, Zhang C, Yuan GH, Zhu J, Cao SY, Wu Q, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997
    [46] Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine, 2017, 23(1): 107-113
    [47] Wang L, Wu YZ, Zhuang LJ, Chen XF, Min HY, Song SY, Liang Q, Li AD, Gao Q. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice[J]. PLoS One, 2019, 14(6): e0218490
    [48] Ji Y, Yin Y, Li ZR, Zhang WZ. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD)[J]. Nutrients, 2019, 11(8): 1712
    [49] Fathy SM, Mahmoud MS. Moringa oleifera Lam. leaf extract mitigates carbon tetrachloride-mediated hepatic inflammation and apoptosis via targeting oxidative stress and toll-like receptor 4/nuclear factor kappa B pathway in mice[J]. Food Science and Human Wellness, 2021, 10(3): 383-391
    [50] Jadhav K, Cohen TS. Can You trust your gut? Implicating a disrupted intestinal microbiome in the progression of NAFLD/NASH[J]. Frontiers in Endocrinology, 2020, 11: 592157
    [51] Chen LL, Kan JT, Zheng NN, Li BB, Hong Y, Yan J, Tao X, Wu GS, Ma JL, Zhu WZ, et al. A botanical dietary supplement from white peony and licorice attenuates nonalcoholic fatty liver disease by modulating gut microbiota and reducing inflammation[J]. Phytomedicine, 2021, 91: 153693
    [52] Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, Ward DV, Grabherr F, Gerner RR, Pfister A, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut, 2018, 67(5): 891-901
    [53] Li S, Wang N, Tan HY, Fan CE, Zhang ZJ, Yuen MF, Feng YB. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease[J]. Clinical and Translational Medicine, 2020, 10(4): e112
    [54] 刘利敏, 姚明解, 胡端敏. 嗜黏蛋白阿克曼氏菌与肝损伤关系的研究进展[J]. 临床肝胆病杂志, 2020, 36(9): 2133-2136 Liu LM, Yao MJ, Hu DM. Research advances in Akkermansia muciniphila and liver injury[J]. Journal of Clinical Hepatology, 2020, 36(9): 2133-2136 (in Chinese)
    [55] Salazar N, Valdés-Varela L, González S, Gueimonde M, de los Reyes-Gavilán CG. Nutrition and the gut microbiome in the elderly[J]. Gut Microbes, 2017, 8(2): 82-97
    [56] Bischoff SC. Microbiota and aging[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19(1): 26-30
    [57] Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the microbiota in the modulation of vaccine immune responses[J]. Frontiers in Microbiology, 2019, 10: 1305
    [58] Neto MC, O’Toole PW. The microbiome in aging: impact on health and wellbeing[A]//The Gut-Brain Axis[M]. Academic Press, 2016: 185-222
    [59] Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, Fernández-García MT, Salazar N, Nogacka AM, Garatachea N, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nature Medicine, 2019, 25(8): 1234-1242
    [60] Karamzin AM, Ropot AV, Sergeyev OV, Khalturina EO. Akkermansia muciniphila and host interaction within the intestinal tract[J]. Anaerobe, 2021, 72: 102472
    [61] Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging[J]. The Lancet Oncology, 2018, 19(6): e295-e304
    [62] Zhu XQ, Han Y, Du J, Liu RZ, Jin KT, Yi W. Microbiota-gut-brain axis and the central nervous system[J]. Oncotarget, 2017, 8(32): 53829-53838
    [63] Kuwahara A, Matsuda K, Kuwahara Y, Asano S, Inui T, Marunaka Y. Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system[J]. Biomedical Research: Tokyo, Japan, 2020, 41(5): 199-216
    [64] Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut[J]. Medicina, 2017, 53(2): 73-84
    [65] Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW. Enterochromaffin 5-HT cells: a major target for GLP-1 and gut microbial metabolites[J]. Molecular Metabolism, 2018, 11: 70-83
    [66] Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota[J]. Cellular and Molecular Life Sciences, 2016, 73(4): 737-755
    [67] LaFerla FM, Oddo S. Alzheimer’s disease: Aβ, tau and synaptic dysfunction[J]. Trends in Molecular Medicine, 2005, 11(4): 170-176
    [68] Minter MR, Zhang C, Leone V, Ringus DL, Zhang XQ, Oyler-Castrillo P, Musch MW, Liao F, Ward JF, Holtzman DM, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro- inflammation and amyloidosis in a murine model of Alzheimer’s disease[J]. Scientific Reports, 2016, 6: 30028
    [69] Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease[J]. Science Translational Medicine, 2016, 8(340): 340ra72
    [70] Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease[J]. Life Sciences, 2021, 264: 118627
    [71] Trinka E, Kwan P, Lee B, Dash A. Epilepsy in Asia: disease burden, management barriers, and challenges[J]. Epilepsia, 2019, 60(Suppl 1): 7-21
    [72] Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet[J]. Cell, 2018, 173(7): 1728-1741.e13
    [73] Huang CF, Li YH, Feng X, Li DF, Li XY, Ouyang QX, Dai WK, Wu GF, Zhou Q, Wang PQ, et al. Distinct gut microbiota composition and functional category in children with cerebral palsy and epilepsy[J]. Frontiers in Pediatrics, 2019, 7: 394
    [74] Mahajan PV, Salvi PS, Mahajan S, Subramanian S. A mini review of gastrointestinal pathology and nutrition in autism spectrum disorder[J]. Journal of Advances in Medicine and Medical Research, 2019: 1-8
    [75] Margolis KG, Buie TM, Turner JB, Silberman AE, Feldman JF, Murray KF, Mcswiggan-Hardin M, Levy J, Bauman ML, Veenstra-Vanderweele J, et al. Development of a brief parent-report screen for common gastrointestinal disorders in autism spectrum disorder[J]. Journal of Autism and Developmental Disorders, 2019, 49(1): 349-362
    [76] Xu MY, Xu XF, Li JJ, Li F. Association between gut microbiota and autism spectrum disorder: a systematic review and meta-analysis[J]. Frontiers in Psychiatry, 2019, 10: 473
    [77] Zhang MX, Ma W, Zhang J, He Y, Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China[J]. Scientific Reports, 2018, 8: 13981
    [78] Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder[J]. Molecular Autism, 2016, 7(1): 37
    [79] Gettinger SN, Wurtz A, Goldberg SB, Rimm D, Schalper K, Kaech S, Kavathas P, Chiang A, Lilenbaum R, Zelterman D, et al. Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2018, 13(6): 831-839
    [80] Hampton T. Gut microbes may shape response to cancer immunotherapy[J]. JAMA, 2018, 319(5): 430-431
    [81] Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103
    [82] Jin YP, Dong H, Xia LL, Yang Y, Zhu YQ, Shen Y, Zheng HJ, Yao CC, Wang Y, Lu S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC[J]. Journal of Thoracic Oncology, 2019, 14(8): 1378-1389
    [83] Yan C, Tu XX, Wu W, Tong Z, Liu LL, Zheng Y, Jiang WQ, Zhao P, Fang WJ, Zhang HY. Antibiotics and immunotherapy in gastrointestinal tumors: friend or foe?[J]. World Journal of Clinical Cases, 2019, 7(11): 1253-1261
    [84] Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97
    [85] Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy[J]. Frontiers in Immunology, 2020, 10: 2989
    [86] Biancheri P, Divekar D, Watson AJM. Could fecal transplantation become part of PD-1-based immunotherapy, due to effects of the intestinal microbiome?[J]. Gastroenterology, 2018, 154(6): 1845-1847
    [87] Bian XY, Wu WR, Yang LY, Lv LX, Wang Q, Li YT, Ye JZ, Fang DQ, Wu JJ, Jiang XW, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice[J]. Frontiers in Microbiology, 2019, 10: 2259
    [88] Daisley BA, Chanyi RM, Abdur-Rashid K, Al KF, Gibbons S, Chmiel JA, Wilcox H, Reid G, Anderson A, Dewar M, et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients[J]. Nature Communications, 2020, 11: 4822
    [89] Publications C, Ezeani MC, Ezeani UU, Onyenekwe CC, Emegakor DC. Circulating immune complex molecular motifs and association with pathogen recognition receptor ligands and inflammatory stimuli[J]. Clinicals in Oncology, 2021, 1(1): 1001
    [90] Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery[J]. Frontiers in Immunology, 2018, 9: 2379
    [91] Kinashi Y, Hase K. Partners in leaky gut syndrome: intestinal dysbiosis and autoimmunity[J]. Frontiers in Immunology, 2021, 12: 673708
    [92] Katiraei S, de Vries MR, Costain AH, Thiem K, Hoving LR, van Diepen JA, Smits HH, Bouter KE, Rensen PCN, Quax PHA, et al. Akkermansia muciniphila exerts lipid-lowering and immunomodulatory effects without affecting neointima formation in hyperlipidemic APOE*3-Leiden.CETP mice[J]. Molecular Nutrition & Food Research, 2020, 64(15): e1900732
    [93] Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, Buschard K, Hansen AK. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse[J]. Diabetologia, 2012, 55(8): 2285-2294
    [94] Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, de Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut, 2018, 67(8): 1445-1453
    [95] Zhou KQ. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies[J]. Journal of Functional Foods, 2017, 33: 194-201
    [96] Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2018, 33(1): 88-98
    [97] Gerhardt S, Mohajeri MH. Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases[J]. Nutrients, 2018, 10(6): 708
    [98] Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal microbiota disruption after stroke[J]. Scientific Reports, 2018, 8: 568
    [99] Wang Q, Huang SQ, Li CQ, Xu Q, Zeng QP. Akkermansia muciniphila may determine chondroitin sulfate ameliorating or aggravating osteoarthritis[J]. Frontiers in Microbiology, 2017, 8: 1955
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶晴,王嫘,彭宇明,高千. 嗜黏蛋白阿克曼菌在疾病中的保护性作用及机制研究进展[J]. 微生物学通报, 2022, 49(5): 1912-1926

复制
分享
文章指标
  • 点击次数:591
  • 下载次数: 1021
  • HTML阅读次数: 2317
  • 引用次数: 0
历史
  • 收稿日期:2021-09-06
  • 录用日期:2021-12-21
  • 在线发布日期: 2022-05-05
文章二维码