科微学术

微生物学通报

聚合物微流控芯片消毒灭菌技术研究进展
作者:

Research progress on sterilization technology of polymer microfluidic chip
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    聚合物微流控芯片成本低、易加工,目前在医药、生物检测和化学合成等领域得到了普遍应用。以热塑性聚合物聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)和热固型聚合物聚二甲基硅氧烷(polydimethylsiloxane,PDMS)为基材的高分子聚合物材料因具有较好的生物相容性和光学透明性,已逐渐成为聚合物微流控芯片加工的主导材料,被广泛应用于生物医药类微流控芯片的制备。鉴于该类芯片应用场景的特殊性,需在使用前进行消毒灭菌处理以避免微生物干扰。目前,针对PMMA和PDMS的消毒灭菌方法包括高压蒸汽灭菌、紫外线灭菌、电子束、60Co γ射线辐射灭菌、超临界二氧化碳灭菌、乙醇消毒、环氧乙烷灭菌、过氧化氢低温等离子体灭菌、绿原酸消毒、清洗剂消毒。本文从基本原理、消毒灭菌方法、应用场景等方面,回顾和总结了相关技术在PMMA和PDMS基体微流控芯片中的实现方法,并在芯片材质、适用范围等方面分析了所适用的消毒灭菌方法,为以聚合物为基材的生物医药类微流控芯片的消毒灭菌提供有益参考。

    Abstract:

    Polymer microfluidic chips have a wide range of application in medicine, biological detection, chemical synthesis and other fields because of its low cost and easy fabrication. Polymer materials based on thermoplastic polymer polymethylmethacrylate (PMMA) and thermosetting polymer polydimethylsiloxane (PDMS), with good biological compatibility and optical transparency, are commonly used as the base material for the preparation of microfluidic chips in biomedicine. However, in view of the particular application scenarios, this kind of chips need to be sterilized prior to use to avoid microbial interference. The available sterilization methods for PMMA and PDMS based materials include autoclaving, ultraviolet, electron beam, 60Co gamma radiation, supercritical carbon dioxide sterilization, ethanol, hydrogen peroxide, ethylene oxide, chlorogenic acid and detergent. This paper reviews and summarizes the related operation methods for the PMMA and PDMS based microfluidic chips from basic principle, sterilization methods, and application scenarios. Meanwhile, we analyze the applicable sterilization methods according to chip material and application, aiming to provide reference for the sterilization of microfluidic chips in biomedicine.

    参考文献
    [1] Erickson D, Li DQ. Integrated microfluidic devices[J]. Analytica Chimica Acta, 2004, 507(1): 11-26
    [2] Elvira KS, I Solvas XC, Wootton RCR, DeMello AJ. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915
    [3] Campeau MA, Lortie A, Tremblay P, Béliveau MO, Dubé D, Langelier È, Rouleau L. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies[J]. Biomedical Engineering Online, 2017, 16(1): 90
    [4] Ma XQ, Li R, Jin ZM, Fan YQ, Zhou XC, Zhang YJ. Injection molding and characterization of PMMA-based microfluidic devices[J]. Microsystem Technologies, 2020, 26(4): 1317-1324
    [5] Zhang YJ, Liu JJ, Wang HL, Fan YQ. PDMS-based microfluidic devices with shrinkable wax molds printed on biaxially orientated polystyrene film[J]. Materials Research Express, 2019, 6(7): 075329
    [6] Reinholt SJ, Behrent A, Greene C, Kalfe A, Baeumner AJ. Isolation and amplification of mRNA within a simple microfluidic lab on a chip[J]. Analytical Chemistry, 2014, 86(1): 849-856
    [7] Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY. Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference[J]. Lab on a Chip, 2007, 7(11): 1461-1468
    [8] Hugo WB. A brief history of heat, chemical and radiation preservation and disinfection[J]. International Biodeterioration & Biodegradation, 1995, 36(3/4): 197-217
    [9] Khetani S, Yong KW, Guan K, Singh A, Phani A, Kollath VO, Kim S, Karan K, Sen A, Sanati-Nezhad A. UV-triggered polymerization of polycatecholamines enables the production of organ-on-chips inside a biosafety cabinet[J]. Applied Materials Today, 2020, 20: 100721
    [10] Vetten MA, Yah CS, Singh T, Gulumian M. Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(7): 1391-1399
    [11] Skaalure SC, Oppegard SC, Eddington DT. Characterization of sterilization techniques on a microfluidic oxygen delivery device[J]. The Journal of Undergraduate Research at the University of Illinois at Chicago, 2008. DOI: 10.5210/jur.v2i1.7462
    [12] Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems[J]. Biomedical Microdevices, 2005, 7(4): 281-293
    [13] Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane)[J]. Biomedical Microdevices, 2003, 5(2): 109-114
    [14] Kuo SW, Kao HC, Chang FC. Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer[J]. Polymer, 2003, 44(22): 6873-6882
    [15] Yavuz C, Oliaei SNB, Cetin B, Yesil-Celiktas O. Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics[J]. The Journal of Supercritical Fluids, 2016, 107: 114-121
    [16] Mori M, Hamamoto A, Takahashi A, Nakano M, Wakikawa N, Tachibana S, Ikehara T, Nakaya Y, Akutagawa M, Kinouchi Y. Development of a new water sterilization device with a 365 nm UV-LED[J]. Medical & Biological Engineering & Computing, 2007, 45(12): 1237-1241
    [17] Gupta A, Avci P, Dai TH, Huang YY, Hamblin MR. Ultraviolet radiation in wound care: sterilization and stimulation[J]. Advances in Wound Care, 2013, 2(8): 422-437
    [18] Soloshenko IA, Bazhenov VY, Khomich VA, Tsiolko VV, Potapchenko NG. Comparative research of efficiency of water decontamination by UV radiation of cold hollow cathode discharge plasma versus that of low- and medium-pressure mercury lamps[J]. IEEE Transactions on Plasma Science, 2006, 34(4): 1365-1369
    [19] Hidaka Y, Kubota K. Study on the sterilization of grain surface using UV radiation[J]. Japan Agricultural Research Quarterly: JARQ, 2006, 40(2): 157-161
    [20] Wu MS, Sun DS, Lin YC, Cheng CL, Hung SC, Chen PK, Yang JH, Chang HH. Nanodiamonds protect skin from ultraviolet B-induced damage in mice[J]. Journal of Nanobiotechnology, 2015, 13: 35
    [21] Toh MR, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing[J]. Asian Journal of Pharmaceutical Sciences, 2013, 8(2): 88-95
    [22] 王锦燕. 60Co-γ辐照灭菌在中药及其制剂中的应用[J]. 现代中药研究与实践, 2003, 17(6): 59-61 Wang JY. Application of 60Co-γ -ray irradiation sterilization in traditional Chinese medicine and preparation[J]. Research and Practice on Chinese Medicines, 2003, 17(6): 59-61 (in Chinese)
    [23] Halpern JM, Gormley CA, Keech MA, von Recum HA. Thermomechanical properties, antibiotic release, and bioactivity of a sterilized cyclodextrin drug delivery system[J]. Journal of Materials Chemistry B, 2014, 2(18): 2764-2772
    [24] Oyama TG, Oyama K, Taguchi M. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips[J]. Lab on a Chip, 2020, 20(13): 2354-2363
    [25] White A, Burns D, Christensen TW. Effective terminal sterilization using supercritical carbon dioxide[J]. Journal of Biotechnology, 2006, 123(4): 504-515
    [26] Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken LV, Debevere J, Van Impe JF, Devlieghere F. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future[J]. International Journal of Food Microbiology, 2007, 117(1): 1-28
    [27] 王爱英, 李军. 超临界CO2处理腐生酵母菌细胞内外pH值的变化[J]. 食品与发酵工业, 2011, 37(9): 45-49 Wang AY, Li J. Determination of extracellular and intracellular pH of saprophytic yeast suspension under supercritical carbon dioxide treatment[J]. Food and Fermentation Industries, 2011, 37(9): 45-49 (in Chinese)
    [28] McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance[J]. Clinical Microbiology Reviews, 1999, 12(1): 147-179
    [29] Asayesh F, Zarabadi MP, Aznaveh NB, Greener J. Microfluidic flow confinement to avoid chemotaxis-based upstream growth in a biofilm flow cell reactor[J]. Analytical Methods, 2018, 10(37): 4579-4587
    [30] Phillip Jr E, Murthy NS, Bolikal D, Narayanan P, Kohn J, Lavelle L, Bodnar S, Pricer K. Ethylene oxide’s role as a reactive agent during sterilization: effects of polymer composition and device architecture[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2013, 101(4): 532-540
    [31] 徐燕, 孙巍, 吴晓松. 环氧乙烷灭菌技术应用与发展[J]. 中国消毒学杂志, 2013, 30(2): 146-151 Xu Y, Sun W, Wu XS. Application and development of ethylene oxide sterilization technology[J]. Chinese Journal of Disinfection, 2013, 30(2): 146-151 (in Chinese)
    [32] Vassal S, Favennec L, Ballet JJ, Brasseur P. Hydrogen peroxide gas plasma sterilization is effective against Cryptosporidium parvum oocysts[J]. American Journal of Infection Control, 1998, 26(2): 136-138
    [33] Kirchner P, Oberländer J, Suso HP, Rysstad G, Keusgen M, Schöning MJ. Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor[J]. Food Control, 2013, 31(2): 530-538
    [34] 王玲娜, 姚佳欢, 马超美. 绿原酸的研究进展[J]. 食品与生物技术学报, 2017, 36(11): 1121-1130 Wang LN, Yao JH, Ma CM. Advances in research on chlorogenic acid[J]. Journal of Food Science and Biotechnology, 2017, 36(11): 1121-1130 (in Chinese)
    [35] Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Xia FF, Modarresi-Ghazani F, et al. Chlorogenic acid (CGA): a pharmacological review and call for further research[J]. Biomedicine & Pharmacotherapy, 2018, 97: 67-74
    [36] Lou ZX, Wang HX, Zhu S, Ma CY, Wang ZP. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science, 2011, 76(6): M398-M403
    [37] Ren S, Wu M, Guo JY, Zhang W, Liu XH, Sun LL, Holyst R, Hou S, Fang YC, Feng XZ. Sterilization of polydimethylsiloxane surface with Chinese herb extract: a new antibiotic mechanism of chlorogenic acid[J]. Scientific Reports, 2015, 5: 10464
    [38] 刘颖, 郭明晔, 白根本. 绿原酸的研究进展[J]. 中药材, 2012, 35(7): 1180-1185 Liu Y, Guo MY, Bai GB. Advances in research on chlorogenic acid[J]. Journal of Chinese Medicinal Materials, 2012, 35(7): 1180-1185 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘竞技,张亚军,范一强. 聚合物微流控芯片消毒灭菌技术研究进展[J]. 微生物学通报, 2022, 49(5): 1902-1911

复制
分享
文章指标
  • 点击次数:419
  • 下载次数: 1071
  • HTML阅读次数: 1899
  • 引用次数: 0
历史
  • 收稿日期:2021-07-17
  • 录用日期:2021-10-11
  • 在线发布日期: 2022-05-05
文章二维码